ﻻ يوجد ملخص باللغة العربية
We present total infrared (IR) and ultraviolet (UV) luminosity functions derived from large representative samples of galaxies at z ~ 0, selected at IR and UV wavelengths from the IRAS IIFSCz catalogue, and the GALEX AIS respectively. We augment these with deep Spitzer and GALEX imaging of galaxies in the 11 Mpc Local Volume Legacy Survey (LVL), allowing us to extend these luminosity functions to lower luminosities (~10^6 L_sun), and providing good constraints on the slope of the luminosity function at the extreme faint end for the first time. Using conventional star formation prescriptions, we generate from our data the SFR distribution function for the local Universe. We find that it has a Schechter form, that the faint-end slope has a constant value (to the limits of our data) of {alpha} = -1.51 pm 0.08, and the characteristic SFR is 9.2 M_sun/yr. We also show the distribution function of the SFR volume density; we then use this to calculate a value for the total SFR volume density at z ~ 0 of 0.025 pm 0.0016 M_sun/yr/Mpc^-3, of which ~ 20% is occurring in starbursts. Decomposing the total star formation by infrared luminosity, it can be seen that 9 pm 1% is due to LIRGs, and 0.7 pm 0.2% is occuring in ULIRGs. By comparing UV and IR emission for galaxies in our sample, we also calculate the fraction of star formation occurring in dust obscured environments, and examine the distribution of dusty star formation: we find a very shallow slope at the highly extincted end, which may be attributable to line of sight orientation effects as well as conventional internal extinction.
Observations of high-z galaxies and gamma-ray bursts now allow for empirical studies during reionization. However, even deep surveys see only the brightest galaxies at any epoch and must extrapolate to arbitrary lower limits to estimate the total rat
As part of an on-going effort to identify, understand and correct for astrophysics biases in the standardization of Type Ia supernovae (SNIa) for cosmology, we have statistically classified a large sample of nearby SNeIa into those located in predomi
We study the star formation rates (SFRs) of galaxies as a function of local galaxy density at 0.6<z<0.9. We used a low-dispersion prism in IMACS on the 6.5-m Baade (Magellan I) telescope to obtain spectra and measured redshifts to a precision of sigm
Recently, Lanzetta et al. (2002) have measured the distribution of star formation rate intensity in galaxies at various redshifts. This data set has a number of advantages relative to galaxy luminosity functions; the effect of surface-brightness dimm
We use a robust sample of 11 z~7 galaxies (z-dropouts) to estimate the stellar mass density of the universe when it was only ~750 Myr old. We combine the very deep optical to near-Infrared photometry from the HST ACS and NICMOS cameras with mid-Infra