ترغب بنشر مسار تعليمي؟ اضغط هنا

Inflation in Gauge Mediation and Gravitino Dark Matter

147   0   0.0 ( 0 )
 نشر من قبل Yuichiro Nakai
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an inflationary scenario based on a phenomenologically viable model with direct gauge mediation of low-scale supersymmetry breaking. Inflation can occur in the supersymmetry-breaking hidden sector. Although the reheating temperature from the inflaton decay is so high that the gravitino problem seems to be severe, late time entropy production from the decay of the pseudomoduli field associated with the supersymmetry breaking can dilute gravitinos sufficiently. We show that gravitinos are also produced from the pseudomoduli decay and there is a model parameter space where gravitinos can be the dark matter in the present universe.



قيم البحث

اقرأ أيضاً

We investigate the Q-ball decay in the gauge-mediated SUSY breaking. Q balls decay mainly into nucleons, and partially into gravitinos, while they are kinematically forbidden to decay into sparticles which would be cosmologically harmful. This is ach ieved by the Q-ball charge small enough to be unstable for the decay, and large enough to be protected kinematically from unwanted decay channel. We can then have right amounts of the baryon asymmetry and the dark matter of the universe, evading any astrophysical and cosmological observational constraints such as the big bang nucleosynthesis, which has not been treated properly in the literatures.
We reinvestigate the scenario that the amount of the baryons and the gravitino dark matter is naturally explained by the decay of the Q balls in the gauge-mediated SUSY breaking. Equipped by the more correct decay rates into gravitinos and baryons re cently derived, we find that the scenario with the direct production of the gravitino dark matter from the Q-ball decay works naturally.
A keV-scale gravitino arsing from a minimal supersymmetric (SUSY) Standard Model (MSSM) is an interesting possibility since the small scale problems that $Lambda$CDM model encounters in the modern cosmology could be alleviated with the keV-scale grav itino serving as the warm dark matter (WDM). Such a light gravitino asks for a low scale supersymmetry (SUSY) breaking for which the gauge mediation (GM) is required as a consistent SUSY-breaking mediation mechanism. In this paper, we show upperbounds of the masses of the second CP-even Higgs boson $H$ and the CP-odd Higgs boson $A$, assuming the keV-scale gravitino to be responsible for the current DM relic abundance: the upperbound on the mass of $H/A$ is found to be $sim 4$ TeV for the gravitino mass of $mathcal{O}(10$-$100)$ keV. Interestingly, the mass of $H/A$ can be as small as 2-3 TeV and the predicted $tanbeta$ is as large as 55-60 for the gravitino mass of $mathcal{O}(10)$ keV. This will be tested in the near future Large Hadron Collider (LHC) experiments.
We investigate supersymmetric hybrid inflation in a realistic model based on the gauge symmetry $SU(4)_c times SU(2)_L times SU(2)_R$. The minimal supersymmetric standard model (MSSM) $mu$ term arises, following Dvali, Lazarides, and Shafi, from the coupling of the MSSM electroweak doublets to a gauge singlet superfield which plays an essential role in inflation. The primordial monopoles are inflated away by arranging that the $SU(4)_c times SU(2)_L times SU(2)_R$ symmetry is broken along the inflationary trajectory. The interplay between the (above) $mu$ coupling, the gravitino mass, and the reheating following inflation is discussed in detail. We explore regions of the parameter space that yield gravitino dark matter and observable gravity waves with the tensor-to-scalar ratio $r sim 10^{-4}-10^{-3}$.
We study Q-ball dark matter in gauge-mediated supersymmetry breaking, and seek the possibility of detection in the IceCube experiment. We find that the Q balls would be the dark matter in the parameter region different from that for gravitino dark ma tter. In particular, the Q ball is a good dark matter candidate for low reheating temperature, which may be suitable for the Affleck-Dine baryogenesis and/or nonthermal leptogenesis. Dark matter Q balls are detectable by IceCube-like experiments in the future, which is the peculiar feature compared to the case of gravitino dark matter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا