ﻻ يوجد ملخص باللغة العربية
We investigate supersymmetric hybrid inflation in a realistic model based on the gauge symmetry $SU(4)_c times SU(2)_L times SU(2)_R$. The minimal supersymmetric standard model (MSSM) $mu$ term arises, following Dvali, Lazarides, and Shafi, from the coupling of the MSSM electroweak doublets to a gauge singlet superfield which plays an essential role in inflation. The primordial monopoles are inflated away by arranging that the $SU(4)_c times SU(2)_L times SU(2)_R$ symmetry is broken along the inflationary trajectory. The interplay between the (above) $mu$ coupling, the gravitino mass, and the reheating following inflation is discussed in detail. We explore regions of the parameter space that yield gravitino dark matter and observable gravity waves with the tensor-to-scalar ratio $r sim 10^{-4}-10^{-3}$.
In $mu$-hybrid inflation a nonzero inflaton vacuum expectation value induced by supersymmetry breaking is proportional to the gravitino mass $m_{3/2}$, which can be exploited to resolve the minimal supersymmetric standard model $mu$ problem. We show
We present an inflationary scenario based on a phenomenologically viable model with direct gauge mediation of low-scale supersymmetry breaking. Inflation can occur in the supersymmetry-breaking hidden sector. Although the reheating temperature from t
We show how successful supersymmetric hybrid inflation is realized in realistic models where the resolution of the minimal supersymmetric standard model mu problem is intimately linked with axion physics. The scalar fields that accompany the axion, s
A double hybrid inflationary scenario in non-minimal supergravity which can predict values of the tensor-to-scalar ratio up to about 0.05 is presented. Larger values of this ratio would require unacceptably large running of the scalar spectral index.
We derive 95% CL lower limits on the lifetime of decaying dark matter in the channels $Z u$, $Well$ and $h u$ using measurements of the cosmic-ray antiproton flux by the PAMELA experiment. Performing a scan over the allowed range of cosmic-ray propag