ﻻ يوجد ملخص باللغة العربية
In this paper, we study resource allocation and adaptive modulation in SC-FDMA which is adopted as the multiple access scheme for the uplink in the 3GPP-LTE standard. A sum-utility maximization (SUmax), and a joint adaptive modulation and sum-cost minimization (JAMSCmin) problems are considered. Unlike OFDMA, in addition to the restriction of allocating a sub-channel to one user at most, the multiple sub-channels allocated to a user in SC-FDMA should be consecutive as well. This renders the resource allocation problem prohibitively difficult and the standard optimization tools (e.g., Lagrange dual approach widely used for OFDMA, etc.) can not help towards its optimal solution. We propose a novel optimization framework for the solution of these problems that is inspired from the recently developed canonical duality theory. We first formulate the optimization problems as binary-integer programming problems and then transform these binary-integer programming problems into continuous space canonical dual problems that are concave maximization problems. Based on the solution of the continuous space dual problems, we derive resource allocation (joint with adaptive modulation for JAMSCmin) algorithms for both the problems which have polynomial complexities. We provide conditions under which the proposed algorithms are optimal. We also propose an adaptive modulation scheme for SUmax problem. We compare the proposed algorithms with the existing algorithms in the literature to assess their performance.
Non-orthogonal multiple access (NOMA) is envisioned to be one of the most beneficial technologies for next generation wireless networks due to its enhanced performance compared to other conventional radio access techniques. Although the principle of
The mobile edge computing framework offers the opportunity to reduce the energy that devices must expend to complete computational tasks. The extent of that energy reduction depends on the nature of the tasks, and on the choice of the multiple access
Millimeter wave (mmWave) communication systems using adaptive-resolution analog-to-digital converters (RADCs) have recently drawn considerable interests from the research community as benefit of their high energy efficiency and low implementation cos
We investigate the joint uplink-downlink design for time-division-duplexing (TDD) and frequency-division-duplexing (FDD) multi-user systems aided by an intelligent reflecting surface (IRS). We formulate and solve a multi-objective optimization proble
In this work, we investigate hybrid analog-digital beamforming (HBF) architectures for uplink cell-free (CF) millimeter-wave (mmWave) massive multiple-input multiple-output (MIMO) systems. {We first propose two HBF schemes, namely, decentralized HBF