ﻻ يوجد ملخص باللغة العربية
If Dark Matter (DM) is composed by Weakly Interacting Massive Particles, its annihilation in the halos harboring the earliest star formation episode may strongly influence the first generation of stars (Population III). Whereas DM annihilation at early stages of gas collapse does not dramatically affect the properties of the cloud, the formation of a hydrostatic object (protostar) and its evolution toward the main sequence may be delayed. This process involves DM concentrated in the center of the halo by gravitational drag, and no consensus is yet reached over whether this can push the initial mass of Population III to higher masses. DM can also be captured through scattering over the baryons in a dense object, onto or very close to the Main Sequence. This mechanism can affect formed stars and in principle prolonge their lifetimes. The strength of both mechanisms depends upon several environmental conditions and on DM parameters; such spread in the parameter space leads to very different scenarios for the observables in the Population. Here I summarize the state of the art in modelling and observational expectations, eventually highlighting the most critical assumptions and sources of uncertainty.
We present a detailed analysis of the radio synchrotron emission induced by WIMP dark matter annihilations and decays in extragalactic halos. We compute intensity, angular correlation, and source counts and discuss the impact on the expected signals
We study the effects of WIMP dark matter (DM) on the collapse and evolution of the first stars in the Universe. Using a stellar evolution code, we follow the pre-Main Sequence (MS) phase of a grid of metal-free stars with masses in the range 5-600 so
If dark matter is mainly composed of axions, the density distribution can be nonuniformly distributed, being clumpy instead. By solving the Einstein-Klein-Gordon system of a scalar field with the potential energy density of an axionlike particle, we
TeV-scale particles that couple to the standard model through the weak force represent a compelling class of dark matter candidates. The search for such Weakly Interacting Massive Particles (WIMPs) has already spanned multiple decades, and whilst it
Perturbations due to the planets combined with the non-Coulomb nature of the gravitational potential in the Sun imply that WIMPs that are gravitationally captured by scattering in surface layers of the Sun can evolve into orbits that no longer inters