ترغب بنشر مسار تعليمي؟ اضغط هنا

Development of a PCI Express Based Readout Electronics for the XPAD3 X-Ray Photon Counting Image

184   0   0.0 ( 0 )
 نشر من قبل Arkadiusz Dawiec
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. Dawiec




اسأل ChatGPT حول البحث

XPAD3 is a large surface X-ray photon counting imager with high count rates, large counter dynamics and very fast data readout. Data are readout in parallel by a PCI Express interface using DMA transfer. The readout frame rate of the complete detector comprising 0.5 MPixels amounts to 500 images per second without dead-time.



قيم البحث

اقرأ أيضاً

204 - Q. D. Zhou , S. Yamada , P. Robbe 2020
Belle II is a new-generation B-factory experiment, dedicated to exploring new physics beyond the standard model of elementary particles in the flavor sector. Belle~II started data-taking in April 2018, using a synchronous data acquisition (DAQ) syste m based on pipelined trigger flow control. The Belle II DAQ system is designed to handle a 30-kHz trigger rate with approximately 1% of dead time, under the assumption of a raw event size of 1 MB. The DAQ system is reliable, and the overall data-taking efficiency reached 84.2% during the run period of January 2020 to June 2020. The current readout system cannot be operated in the term of 10 years from the viewpoint of DAQ maintainability; meanwhile, the readout system is obstructing high-speed data transmission. A solution involving a PCI-express-based readout module with high data throughput of up to 100 Gb/s was adopted to upgrade the Belle II DAQ system. We particularly focused on the design of firmware and software based on this new generation of readout board, called PCIe40, with an Altera Arria 10 field-programmable gate array chip. Forty-eight GBT (GigaBit Transceiver) serial links, PCI-express hard IP-based DMA architecture, interface of timing and trigger distribution system, and slow control system were designed to integrate with the current Belle II DAQ system. This paper describes the performances accomplished during the data readout and slow control tests conducted using a test bench and a demonstration performed using on-site front-end electronics, specifically involving Belle II TOP and KLM sub-detectors.
This article presents the readout electronics of a novel beam monitoring system for ion research facility accelerator. The readout electronics are divided into Front-end Card (FEC) and Readout Control Unit (RCU). FEC uses Topmetal II minus to process es the energy of the hitting particles and convert it into a voltage signal. The main function of RCU is to digitize the analog output signal of FEC and format the raw data. On the other hand, the RCU also processes the control commands from the host and distributes the commands according to the mapping. The readout electronic has been characterized and calibrated in the laboratory, and have been installed with the detector. Implementation and testing of readout electronics have been discussed.
LEGEND, the Large Enriched Germanium Experiment for Neutrinoless $betabeta$ Decay, is a ton-scale experimental program to search for neutrinoless double beta ($0 ubetabeta$) decay in the isotope $^{76}$Ge with an unprecedented sensitivity. Building o n the success of the low-background $^{76}$Ge-based GERDA and MAJORANA DEMONSTRATOR experiments, the LEGEND collaboration is targeting a signal discovery sensitivity beyond $10^{28},$yr on the decay half-life with approximately $10,text{t}cdottext{yr}$ of exposure. Signal readout electronics in close proximity to the detectors plays a major role in maximizing the experiments discovery sensitivity by reducing electronic noise and improving pulse shape analysis capabilities for the rejection of backgrounds. However, the proximity also poses unique challenges for the radiopurity of the electronics. Application-specific integrated circuit (ASIC) technology allows the implementation of the entire charge sensitive amplifier (CSA) into a single low-mass chip while improving the electronic noise and reducing the power consumption. In this work, we investigated the properties and electronic performance of a commercially available ASIC CSA, the XGLab CUBE preamplifier, together with a p-type point contact high-purity germanium detector. We show that low noise levels and excellent energy resolutions can be obtained with this readout. Moreover, we demonstrate the viability of pulse shape discrimination techniques for reducing background events.
The performance of hybrid GaAs pixel detectors as X-ray imaging sensors were investigated at room temperature. These hybrids consist of 300 mu-m thick GaAs pixel detectors, flip-chip bonded to a CMOS Single Photon Counting Chip (PCC). This chip consi sts of a matrix of 64 x 64 identical square pixels (170 mu-m x 170 mu-m) and covers a total area of 1.2 cm**2. The electronics in each cell comprises a preamplifier, a discriminator with a 3-bit threshold adjust and a 15-bit counter. The detector is realized by an array of Schottky diodes processed on semi-insulating LEC-GaAs bulk material. An IV-charcteristic and a detector bias voltage scan showed that the detector can be operated with voltages around 200 V. Images of various objects were taken by using a standard X-ray tube for dental diagnostics. The signal to noise ratio (SNR) was also determined. The applications of these imaging systems range from medical applications like digital mammography or dental X-ray diagnostics to non destructive material testing (NDT). Because of the separation of detector and readout chip, different materials can be investigated and compared.
For the upgrade of the inner tracker of the BESIII spectrometer, planned for 2018, a lightweight tracker based on an innovative Cylindrical Gas Electron Multiplier (CGEM) detector is now under development. The analogue readout of the CGEM enables the use of a charge centroid algorithm to improve the spatial resolution to better than 130 um while loosening the pitch strip to 650 um, which allows to reduce the total number of channels to about 10 000. The channels are readout by 160 dedicated integrated 64-channel front-end ASICs, providing a time and charge measurement and featuring a fully-digital output. The energy measurement is extracted either from the time-over-threshold (ToT) or the 10-bit digitisation of the peak amplitude of the signal. The time of the event is generated by quad-buffered low-power TDCs, allowing for rates in excess of 60 kHz per channel. The TDCs are based on analogue interpolation techniques and produce a time stamp (or two, if working in ToT mode) of the event with a time resolution better than 50 ps. The front-end noise, based on a CSA and CR-RC2 shapers, dominate the channel intrinsic time jitter, which is less than 5 ns r.m.s.. The time information of the hit can be used to reconstruct the track path, operating the detector as a small TPC and hence improving the position resolution when the distribution of the cloud, due to large incident angle or magnetic field, is very broad. Event data is collected by an off-detector motherboard, where each GEM-ROC readout card handles 4 ASIC carrier PCBs (512 channels). Configuration upload and data readout between the off-detector electronics and the VME-based data collector cards are managed by bi-directional fibre optical links.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا