ترغب بنشر مسار تعليمي؟ اضغط هنا

Prospects for a Dark Matter annihilation signal towards the Sagittarius dwarf galaxy with ground based Cherenkov telescopes

195   0   0.0 ( 0 )
 نشر من قبل Aion Viana
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Dwarf galaxies are widely believed to be among the best targets for indirect dark matter searches using high-energy gamma rays; and indeed gamma-ray emission from these objects has long been a subject of detailed study for ground-based atmospheric Cherenkov telescopes. Here, we update current exclusion limits obtained on the closest dwarf, the Sagittarius dwarf galaxy, in light of recent realistic dark matter halo models. The constraints on the velocity-weighted annihilation cross section of the dark matter particle are of a few 10$^{-23}$ cm$^{3}$s$^{-1}$ in the TeV energy range for a 50 h exposure. The limits are extrapolated to the sensitivities of future Cherenkov Telescope Arrays. For 200 h of observation time, the sensitivity at 95% C.L. reaches 10$^{-25}$ cm$^{3}$s$^{-1}$. Possible astrophysical backgrounds from gamma-ray sources dissembled in Sagittarius dwarf are studied. It is shown that with long-enough observation times, gamma-ray background from millisecond pulsars in a globular cluster contained within Sagittarius dwarf may limit the sensitivity to dark matter annihilations.



قيم البحث

اقرأ أيضاً

We derive the Cherenkov Telescope Array (CTA) sensitivity to dark matter (DM) annihilation in several primary channels, over a broad range of DM masses. These sensitivities are estimated when CTA is pointed towards a large sample of Milky Ways dwarf spheroidal galaxies (dSphs) with promising $J$-factors and small statistical uncertainties. This analysis neglects systematic uncertainties, which we estimate at the level of at least 1 dex. We also present sensitivities on the annihilation cross section from a combined analysis of 4 dSphs. We assess the CTA sensitivity by: $i)$ using, for each dSph, a recent determination of the $J$-factor and its statistical error; $ii)$ considering the most up-to-date cosmic ray background; and $iii)$ including both spatial and spectral terms in the likelihood analysis. We find that a joint spectral and spatial analysis improves the CTA sensitivity, in particular for primary channels with sharp features in the $gamma$-ray energy spectrum and for dSphs with steep $J$-factor profiles, as deduced from the internal kinematics. The greatest sensitivities are obtained for observations of Ursa Minor among the classical dSphs and of Ursa Major II for ultra-faint dSphs.
Dwarf Spheroidal galaxies are amongst the best targets to search for a Dark Matter annihilation signal. The annihilation of WIMPs in the center of Sagittarius dwarf spheroidal (Sgr dSph) galaxy would produce high energy gamma-rays in the final state. Observations carried out with the H.E.S.S. array of Imaging Atmospheric Cherenkov telescopes are presented. A careful modelling of the Dark Matter halo profile of Sgr dwarf was performed using latest measurements on its structural parameters. Constraints on the velocity-weighted cross section of Dark Matter particles are derived in the framework of Supersymmetric and Kaluza-Klein models.
A TeV scale electroweak particle is a well motivated candidate for the dark matter (DM) of our Universe. Yet such a particle may only be detectable using indirect detection instruments sensitive to TeV-scale gamma rays that can result from dark matte r annihilations. We present a mock analysis of the sensitivity for the present ground-based Cherenkov telescope array H.E.S.S. (High Energy Spectroscopic System) to detect TeV scale DM in the Galactic Center region. The work combines next-to-leading-logarithmic order calculations for the annihilation photon spectrum, as well as a comprehensive treatment of detector effects and expected backgrounds. Forecast limits on the sensitivity of H.E.S.S. have been derived across the important TeV mass range, assuming different DM density profiles and focusing on the canonical WIMP dark matter candidate Wino.These limits test our present and future ability to probe the predicted thermal cross section for some of the most promising DM candidates that could be discovered in the coming decade.
We search for an indirect signal of dark matter through very high-energy gamma rays from the Wolf-Lundmark-Melotte (WLM) dwarf irregular galaxy. The pair annihilation of dark matter particles would produce Standard Model particles in the final state such as gamma rays, which might be detected by ground-based Cherenkov telescopes. Dwarf irregular galaxies represent promising targets as they are dark matter dominated objects with well measured kinematics and small uncertainties on their dark matter distribution profiles. In 2018, the H.E.S.S. five-telescope array observed the dwarf irregular galaxy WLM for 18 hours. We present the first analysis based on data obtained from an imaging atmospheric Cherenkov telescope for this subclass of dwarf galaxy. As we do not observe any significant excess in the direction of WLM, we interpret the result in terms of constraints on the velocity-weighted cross section for dark matter pair annihilation as a function of the dark matter particle mass for various continuum channels as well as the prompt gamma-gamma emission. For the $tau^+tau^-$ channel the limits reach a $langle sigma v rangle$ value of about $4times 10^{-22}$ cm3s-1 for a dark matter particle mass of 1 TeV. For the prompt gamma-gamma channel, the upper limit reaches a $langle sigma v rangle$ value of about $5 times10^{-24}$ cm3s-1 for a mass of 370 GeV. These limits represent an improvement of up to a factor 200 with respect to previous results for the dwarf irregular galaxies for TeV dark matter search.
In this paper, we compare dwarf galaxies and galaxy clusters in order to elucidate which object class is the best target for gamma-ray DM searches with imaging atmospheric Cherenkov telescopes (IACTs). We have built a mixed dwarfs+clusters sample con taining some of the most promising nearby dwarf galaxies (Draco, Ursa Minor, Wilman 1 and Segue 1) and local galaxy clusters (Perseus, Coma, Ophiuchus, Virgo, Fornax, NGC5813 and NGC5846), and then compute their DM annihilation flux profiles by making use of the latest modeling of their DM density profiles. We also include in our calculations the effect of DM substructure. Willman 1 appears as the best candidate in the sample. However, its mass modeling is still rather uncertain, so probably other candidates with less uncertainties and quite similar fluxes, namely Ursa Minor and Segue 1, might be better options. As for galaxy clusters, Virgo represents the one with the highest flux. However, its large spatial extension can be a serious handicap for IACT observations and posterior data analysis. Yet, other local galaxy cluster candidates with more moderate emission regions, such as Perseus, may represent good alternatives. After comparing dwarfs and clusters, we found that the former exhibit annihilation flux profiles that, at the center, are roughly one order of magnitude higher than those of clusters, although galaxy clusters can yield similar, or even higher, integrated fluxes for the whole object once substructure is taken into account. Even when any of these objects are strictly point-like according to the properties of their annihilation signals, we conclude that dwarf galaxies are best suited for observational strategies based on the search of point-like sources, while galaxy clusters represent best targets for analyses that can deal with rather extended emissions. Finally, we study the detection prospects for IACTs [ABRIDGED]
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا