ترغب بنشر مسار تعليمي؟ اضغط هنا

Search for a Dark Matter annihilation signal from the Sagittarius dwarf galaxy with H.E.S.S

288   0   0.0 ( 0 )
 نشر من قبل Moulin Emmanuel
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Dwarf Spheroidal galaxies are amongst the best targets to search for a Dark Matter annihilation signal. The annihilation of WIMPs in the center of Sagittarius dwarf spheroidal (Sgr dSph) galaxy would produce high energy gamma-rays in the final state. Observations carried out with the H.E.S.S. array of Imaging Atmospheric Cherenkov telescopes are presented. A careful modelling of the Dark Matter halo profile of Sgr dwarf was performed using latest measurements on its structural parameters. Constraints on the velocity-weighted cross section of Dark Matter particles are derived in the framework of Supersymmetric and Kaluza-Klein models.



قيم البحث

اقرأ أيضاً

Observations of the Sagittarius dwarf spheroidal (Sgr dSph) galaxy were carried out with the H.E.S.S. array of four imaging air Cherenkov telescopes in June 2006. A total of 11 hours of high quality data are available after data selection. There is n o evidence for a very high energy gamma-ray signal above the energy threshold at the target position. A 95% C.L. flux limit of 3.6 x 10-12 cm-2s-1 above 250 GeV has been derived. Constraints on the velocity-weighted cross section <sigma v> are calculated in the framework of Dark Matter particle annihilation using realistic models for the Dark Matter halo profile of Sagittarius dwarf galaxy. Two different models have been investigated encompassing a large class of halo types. A 95% C.L. exclusion limit on <sigma v> of the order of 2 x 10-25 cm3s-1 is obtained for a core profile in the 100 GeV - 1 TeV neutralino mass range.
We search for an indirect signal of dark matter through very high-energy gamma rays from the Wolf-Lundmark-Melotte (WLM) dwarf irregular galaxy. The pair annihilation of dark matter particles would produce Standard Model particles in the final state such as gamma rays, which might be detected by ground-based Cherenkov telescopes. Dwarf irregular galaxies represent promising targets as they are dark matter dominated objects with well measured kinematics and small uncertainties on their dark matter distribution profiles. In 2018, the H.E.S.S. five-telescope array observed the dwarf irregular galaxy WLM for 18 hours. We present the first analysis based on data obtained from an imaging atmospheric Cherenkov telescope for this subclass of dwarf galaxy. As we do not observe any significant excess in the direction of WLM, we interpret the result in terms of constraints on the velocity-weighted cross section for dark matter pair annihilation as a function of the dark matter particle mass for various continuum channels as well as the prompt gamma-gamma emission. For the $tau^+tau^-$ channel the limits reach a $langle sigma v rangle$ value of about $4times 10^{-22}$ cm3s-1 for a dark matter particle mass of 1 TeV. For the prompt gamma-gamma channel, the upper limit reaches a $langle sigma v rangle$ value of about $5 times10^{-24}$ cm3s-1 for a mass of 370 GeV. These limits represent an improvement of up to a factor 200 with respect to previous results for the dwarf irregular galaxies for TeV dark matter search.
A search for a very-high-energy (VHE; >= 100 GeV) gamma-ray signal from self-annihilating particle Dark Matter (DM) is performed towards a region of projected distance r ~ 45-150 pc from the Galactic Center. The background-subtracted gamma-ray spectr um measured with the High Energy Stereoscopic System (H.E.S.S.) gamma-ray instrument in the energy range between 300 GeV and 30 TeV shows no hint of a residual gamma-ray flux. Assuming conventional Navarro-Frenk-White (NFW) and Einasto density profiles, limits are derived on the velocity-weighted annihilation cross section < sigma v> as a function of the DM particle mass. These are among the best reported so far for this energy range. In particular, for the DM particle mass of ~1 TeV, values for <sigma v> above 3 * 10^(-25) cm^3 s^(-1) are excluded for the Einasto density profile. The limits derived here differ much less for the chosen density profile parametrizations, as opposed to limits from gamma-ray observations of dwarf galaxies or the very center of the Milky Way, where the discrepancy is significantly larger.
Dwarf galaxies are widely believed to be among the best targets for indirect dark matter searches using high-energy gamma rays; and indeed gamma-ray emission from these objects has long been a subject of detailed study for ground-based atmospheric Ch erenkov telescopes. Here, we update current exclusion limits obtained on the closest dwarf, the Sagittarius dwarf galaxy, in light of recent realistic dark matter halo models. The constraints on the velocity-weighted annihilation cross section of the dark matter particle are of a few 10$^{-23}$ cm$^{3}$s$^{-1}$ in the TeV energy range for a 50 h exposure. The limits are extrapolated to the sensitivities of future Cherenkov Telescope Arrays. For 200 h of observation time, the sensitivity at 95% C.L. reaches 10$^{-25}$ cm$^{3}$s$^{-1}$. Possible astrophysical backgrounds from gamma-ray sources dissembled in Sagittarius dwarf are studied. It is shown that with long-enough observation times, gamma-ray background from millisecond pulsars in a globular cluster contained within Sagittarius dwarf may limit the sensitivity to dark matter annihilations.
The Fornax galaxy cluster was observed with the High Energy Stereoscopic System (H.E.S.S.) for a total live time of 14.5 hours, searching for very-high-energy (VHE, E>100 GeV) gamma-rays from dark matter (DM) annihilation. No significant signal was f ound in searches for point-like and extended emissions. Using several models of the DM density distribution, upper limits on the DM velocity-weighted annihilation cross-section <sigma v> as a function of the DM particle mass are derived. Constraints are derived for different DM particle models, such as those arising from Kaluza-Klein and supersymmetric models. Various annihilation final states are considered. Possible enhancements of the DM annihilation gamma-ray flux, due to DM substructures of the DM host halo, or from the Sommerfeld effect, are studied. Additional gamma-ray contributions from internal bremsstrahlung and inverse Compton radiation are also discussed. For a DM particle mass of 1 TeV, the exclusion limits at 95% of confidence level reach values of <sigma v> ~ 10^-23cm^3s^-1, depending on the DM particle model and halo properties. Additional contribution from DM substructures can improve the upper limits on <sigma v> by more than two orders of magnitude. At masses around 4.5 TeV, the enhancement by substructures and the Sommerfeld resonance effect results in a velocity-weighted annihilation cross-section upper limit at the level of <sigma v> ~ 10^-26cm^3s^-1.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا