ترغب بنشر مسار تعليمي؟ اضغط هنا

Heterodyne non-demolition measurements on cold atomic samples: towards the preparation of non-classical states for atom interferometry

50   0   0.0 ( 0 )
 نشر من قبل Simon Bernon
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Simon Bernon




اسأل ChatGPT حول البحث

We report on a novel experiment to generate non-classical atomic states via quantum non-demolition (QND) measurements on cold atomic samples prepared in a high finesse ring cavity. The heterodyne technique developed for the QND detection exhibits an optical shot-noise limited behavior for local oscillator optical power of a few hundred muW, and a detection bandwidth of several GHz. This detection tool is used in single pass to follow non destructively the internal state evolution of an atomic sample when subjected to Rabi oscillations or a spin-echo interferometric sequence.

قيم البحث

اقرأ أيضاً

With the advent of gravitational wave detectors employing squeezed light, quantum waveform estimation---estimating a time-dependent signal by means of a quantum-mechanical probe---is of increasing importance. As is well known, backaction of quantum m easurement limits the precision with which the waveform can be estimated, though these limits can in principle be overcome by quantum nondemolition (QND) measurement setups found in the literature. Strictly speaking, however, their implementation would require infinite energy, as their mathematical description involves Hamiltonians unbounded from below. This raises the question of how well one may approximate nondemolition setups with finite energy or finite-dimensional realizations. Here we consider a finite-dimensional waveform estimation setup based on the quasi-ideal clock and show that the estimation errors due to approximating the QND condition decrease slowly, as a power law, with increasing dimension. As a result, we find that good QND approximations require large energy or dimensionality. We argue that this result can be expected to also hold for setups based on truncated oscillators or spin systems.
203 - Kae Nemoto , W. J. Munro 2005
In this paper we investigate the linear and nonlinear models of optical quantum computation and discuss their scalability and efficiency. We show how there are significantly different scaling properties in single photon computation when weak cross-Ke rr nonlinearities are allowed to supplement the usual linear optical set. In particular we show how quantum non-demolition measurements are an efficient resource for universal quantum computation.
The realization of quantum adiabatic dynamics is at the core of implementations of adiabatic quantum computers. One major issue is to efficiently compromise between the long time scales required by the adiabatic protocol and the detrimental effects o f the environment, which set an upper bound to the time scale of the operation. In this work we propose a protocol which achieves fast adiabatic dynamics by coupling the system to an external environment by the means of a quantum-non-demolition (QND) Hamiltonian. We analyse the infidelity of adiabatic transfer for a Landau-Zener problem in the presence of QND measurement, where the qubit couples to a meter which in turn quickly dissipates. We analyse the protocols fidelity as a function of the strength of the QND coupling and of the relaxation time of the meter. In the limit where the decay rate of the ancilla is the largest frequency scale of the dynamics, the QND coupling induces an effective dephasing in the adiabatic basis. Optimal conditions for adiabaticity are found when the coupling with the meter induces dissipative dynamics which suppresses unwanted diabatic transitions.
Quantum non-demolition (QND) measurement is an important tool in the field of quantum information processing and quantum optics. The atom-light hybrid interferometer is of great interest due to its combination of atomic spin wave and optical wave, wh ich can be utilized for photon number QND measurement via the AC-Stark effect. In this paper, we present an actively correlated atom-light hybrid interferometer where the output is detected with the method of active correlation output readout via a nonlinear Raman process (NRP). Then this interferometer is used for QND measurement of photon number and the signal-to-noise ratio (SNR) is studied. Compared to the traditional SU(2) interferometer, the SNR in a balanced case is improved by a gain factor of $g$ of NRP. Furthermore, the performance of QND measurement is analyzed. In the presence of losses, the measurement quality is reduced. We can adjust the gain parameter of the NRP in readout stage to reduce the impact due to losses. Moreover, this scheme is a multiarm interferometer, which has the potential of multiparameter estimation with many important applications in the detection of vector fields, quantum imaging and so on.
We demonstrate a new method for non-destructive imaging of laser-cooled atoms. This spatial heterodyne technique forms a phase image by interfering a strong carrier laser beam with a weak probe beam that passes through the cold atom cloud. The figure of merit equals or exceeds that of phase-contrast imaging, and the technique can be used over a wider range of spatial scales. We show images of a dark spot MOT taken with imaging fluences as low as 61 pJ/cm^2 at a detuning of 11 linewidths, resulting in 0.0004 photons scattered per atom.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا