ﻻ يوجد ملخص باللغة العربية
For the high-frequency peaked BL Lac object Mrk 421 we study the variation of the spectral energy distribution (SED) as a function of source activity, from quiescent to active. We use a fully automatized chi-squared minimization procedure, instead of the eyeball procedure more commonly used in the literature, to model nine SED datasets with a one-zone Synchrotron-Self-Compton (SSC) model and examine how the model parameters vary with source activity. The latter issue can finally be addressed now, because simultaneous broad-band SEDs (spanning from optical to VHE photon energies) have finally become available. Our results suggest that in Mrk 421 the magnetic field decreases with source activity, whereas the electron spectrums break energy and the Doppler factor increase -- the other SSC parameters turn out to be uncorrelated with source activity. In the SSC framework these results are interpreted in a picture where the synchrotron power and peak frequency remain constant with varying source activity, through a combination of decreasing magnetic field and increasing number density of electrons below the break energy: since this leads to an increased electron-photon scattering efficiency, the resulting Compton power increases, and so does the total (= synchrotron plus Compton) emission.
Here we report our recent study on the spectral energy distribution (SED) of the high frequency BL Lac object Mrk 421 in different luminosity states. We used a full-fledged chi2-minimization procedure instead of more commonly used eyeball fit to mode
We report on the gamma-ray activity of the high-synchrotron-peaked BL Lacertae object Mrk 421 during the first 1.5 years of Fermi operation, from 2008 August 5 to 2010 March 12. We find that the Large Area Telescope (LAT) gamma-ray spectrum above 0.3
Markarian 421 (Mrk 421) is a high-synchrotron-peaked blazar showing relentless variability across the electromagnetic spectrum from radio to gamma-rays. We use over 7-years of radio and GeV observations to study the correlation and connected variabil
Since September 2005, the Whipple 10m Gamma-ray Telescope has been operated primarily as a blazar monitor. The five Northern Hemisphere blazars that have already been detected at the Whipple Observatory, Markarian 421, H1426+428, Markarian 501, 1ES 1
Statistical properties of photon count maps have recently been proven as a new tool to study the composition of the gamma-ray sky with high precision. We employ the 1-point probability distribution function of 6 years of Fermi-LAT data to measure the