ترغب بنشر مسار تعليمي؟ اضغط هنا

Statistical Measurement of the Gamma-ray Source-count Distribution as a Function of Energy

36   0   0.0 ( 0 )
 نشر من قبل Hannes-Sebastian Zechlin
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Statistical properties of photon count maps have recently been proven as a new tool to study the composition of the gamma-ray sky with high precision. We employ the 1-point probability distribution function of 6 years of Fermi-LAT data to measure the source-count distribution dN/dS and the diffuse components of the high-latitude gamma-ray sky as a function of energy. To that aim, we analyze the gamma-ray emission in five adjacent energy bands between 1 GeV and 171 GeV. It is demonstrated that the source-count distribution as a function of flux is compatible with a broken power law up to energies of ~50 GeV. The index below the break is between 1.95 and 2.0. For higher energies, a simple power-law fits the data, with an index of 2.2^{+0.7}_{-0.3} in the energy band between 50 GeV and 171 GeV. Upper limits on further possible breaks as well as the angular power of unresolved sources are derived. We find that point-source populations probed by this method can explain 83^{+7}_{-13}% (81^{+52}_{-19}%) of the extragalactic gamma-ray background between 1.04 GeV and 1.99 GeV (50 GeV and 171 GeV). The method has excellent capabilities for constraining the gamma-ray luminosity function and the spectra of unresolved blazars.

قيم البحث

اقرأ أيضاً

Photon counts statistics have recently been proven to provide a sensitive observable for characterizing gamma-ray source populations and for measuring the composition of the gamma-ray sky. In this work, we generalize the use of the standard 1-point p robability distribution function (1pPDF) to decompose the high-latitude gamma-ray emission observed with Fermi-LAT into: (i) point-source contributions, (ii) the Galactic foreground contribution, and (iii) a diffuse isotropic background contribution. We analyze gamma-ray data in five adjacent energy bands between 1 and 171 GeV. We measure the source-count distribution dN/dS as a function of energy, and demonstrate that our results extend current measurements from source catalogs to the regime of so far undetected sources. Our method improves the sensitivity for resolving point-source populations by about one order of magnitude in flux. The dN/dS distribution as a function of flux is found to be compatible with a broken power law. We derive upper limits on further possible breaks as well as the angular power of unresolved sources. We discuss the composition of the gamma-ray sky and capabilities of the 1pPDF method.
Different forms of long gamma-ray bursts (GRBs) Luminosity Functions are considered on the basis of an explicit physical model. The inferred flux distributions are compared with the observed ones from two samples of GRBs, Swift and Fermi GBM. The bes t fit parameters of the Luminosity functions are found and the physical interpretations are discussed. The results are consistent with the observation of a comparable number of flat phase afterglows and monotonic decreasing ones.
Very high-energy gamma-rays (VHE, E>100 GeV) propagating over cosmological distances can interact with the low-energy photons of the extragalactic background light (EBL) and produce electron-positron pairs. The transparency of the universe to VHE gam ma-rays is then directly related to the spectral energy distribution (SED) of the EBL. The observation of features in the VHE energy spectra of extragalactic sources allows the EBL to be measured, which otherwise is very difficult to determine. An EBL-model independent measurement of the EBL SED with the H.E.S.S. array of Cherenkov telescopes is presented. It is obtained by extracting the EBL absorption signal from the reanalysis of high-quality spectra of blazars. From H.E.S.S. data alone the EBL signature is detected at a significance of 9.5 sigma, and the intensity of the EBL obtained in different spectral bands is presented together with the associated gamma-ray horizon.
The slope of the source-count distribution of fast radio burst (FRB) fluences, $alpha$, has been estimated using a variety of methods. Hampering all attempts have been the low number of detected FRBs, and the difficulty of defining a completeness thr eshold for FRB surveys. In this work, we extend maximum-likelihood methods for estimating $alpha$, using detected and threshold signal-to-noise ratios applied to all FRBs in a sample without regard to a completeness threshold. Using this method with FRBs detected by the Parkes radio telescope, we find $alpha=-1.18 pm 0.24$ (68% confidence interval, C.I.), i.e. consistent with a non-evolving Euclidean distribution ($alpha=-1.5$). Applying these methods to the Australian Square Kilometre Array Pathfinder (ASKAP) Commensal Real-time ASKAP Fast Transients (CRAFT) FRB survey finds $alpha=-2.2 pm 0.47$ (68% C.I.). A full maximum-likelihood estimate finds an inconsistency with the Parkes rate with a p-value of 0.86% ($2.6, sigma$). If not due to statistical fluctuations or biases in Parkes data, this is the first evidence for deviations from a pure power law in the integral source-count distribution of FRBs. It is consistent with a steepening of the integral source-count distribution in the fluence range 5--40,Jy,ms, for instance due to a cosmological population of FRB progenitors evolving more rapidly than the star-formation rate, and peaking in the redshift range 1--3.
For the high-frequency peaked BL Lac object Mrk 421 we study the variation of the spectral energy distribution (SED) as a function of source activity, from quiescent to active. We use a fully automatized chi-squared minimization procedure, instead of the eyeball procedure more commonly used in the literature, to model nine SED datasets with a one-zone Synchrotron-Self-Compton (SSC) model and examine how the model parameters vary with source activity. The latter issue can finally be addressed now, because simultaneous broad-band SEDs (spanning from optical to VHE photon energies) have finally become available. Our results suggest that in Mrk 421 the magnetic field decreases with source activity, whereas the electron spectrums break energy and the Doppler factor increase -- the other SSC parameters turn out to be uncorrelated with source activity. In the SSC framework these results are interpreted in a picture where the synchrotron power and peak frequency remain constant with varying source activity, through a combination of decreasing magnetic field and increasing number density of electrons below the break energy: since this leads to an increased electron-photon scattering efficiency, the resulting Compton power increases, and so does the total (= synchrotron plus Compton) emission.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا