ترغب بنشر مسار تعليمي؟ اضغط هنا

Nuclear mass systematics and nucleon-removal thresholds; application to 17-Na

182   0   0.0 ( 0 )
 نشر من قبل Ken Amos
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A survey of known threshold excitations of mirror systems suggests a means to estimate masses of nuclear systems that are uncertain or not known, as does a trend in the relative energies of isobaric ground states. Using both studies and known mirror-pair energy differences, we estimate the mass of the nucleus 17-Na and its energy relative to the p+16-Ne threshold. This model-free estimate of the latter is larger than that suggested by recent structure models.



قيم البحث

اقرأ أيضاً

153 - J.A. Tostevin , A. Gade 2014
There is now a large and increasing body of experimental data and theoretical analyses for reactions that remove a single nucleon from an intermediate-energy beam of neutron- or proton-rich nuclei. In each such measurement, one obtains the inclusive cross section for the population of all bound final states of the mass A-1 reaction residue. These data, from different regions of the nuclear chart, and that involve weakly- and strongly-bound nucleons, are compared with theoretical expectations. These calculations include an approximate treatment of the reaction dynamics and shell-model descriptions of the projectile initial state, the bound final states of the residues, and the single-particle strengths computed from their overlap functions. The results are discussed in the light of recent data, more exclusive tests of the eikonal dynamical description, and calculations that take input from more microscopic nuclear structure models.
94 - J.A. Tostevin , A. Gade 2021
The body of experimental measurements of intermediate-energy reactions that remove a single nucleon from a secondary beam of neutron- or proton-rich nuclei continues to grow. These data have been analysed consistently using an approximate, eikonal-mo del treatment of the reaction dynamics combined with appropriate shell-model descriptions of the projectile initial state, the bound final states spectrum of the reaction residue and single-particle removal strengths computed from their wave-function overlaps. The systematics of the ratio $R_s$ of the measured inclusive cross-section to all bound final states and the calculated cross-section to bound shell-model states -- in different regions of the nuclear chart and involving both very weakly-bound and strongly-bound valence nucleons -- is important in relating the empirically deduced orbital occupancies to those from the best available shell-model predictions. Importantly, several new higher-energy measurements, for which the sudden-approximation aspect of the dynamical description is placed on an even stronger footing, now supplement the previously-analysed measurements. These additional data sets are discussed. Their $R_s$ values are shown to conform to and reinforce the earlier-observed systematics, with no indication that the approximately linear reduction in $R_s$ with increasing nucleon separation energy is a consequence of a breakdown of the sudden approximation.
489 - L.P. Kaptari , B. Kampfer 2008
The production of eta and eta-prime mesons in nucleon-nucleon collisions near thresholds is considered within a one-boson exchange model. We show the feasibility of an experimental access to transition formfactors.
One-nucleon removal reactions at or above the Fermi energy are important tools to explore the single-particle structure of exotic nuclei. Experimental data must be compared with calculations to extract structure information, evaluate correlation effe cts in nuclei or determine reaction rates for nuclear astrophysics. However, there is insufficient knowledge to calculate accurately the cross sections for these reactions. We evaluate the contributions of the final state interaction (FSI) and of the medium modifications of the nucleon-nucleon interactions and obtain the shapes and magnitudes of momentum distributions. Such effects have been often neglected in the literature. Calculations for reactions at energies 35 - 1000 MeV/nucleon are reported and compared to published data. For consistency, the state-of-the-art eikonal method for stripping and diffraction dissociation is used. We find that the two effects are important and their relative contributions vary with the energy and with the atomic and mass number of the projectile involved. These two often neglected effects modify considerably the one-nucleon removal cross sections. As expected, the effect are largest at lower energies, around 50 MeV/nucleon and on heavy targets.
Within an isospin and momentum dependent transport model, the dynamics of isospin particles (nucleons and light clusters) in Fermi-energy heavy-ion collisions are investigated for constraining the isospin splitting of nucleon effective mass and the s ymmetry energy at subsaturation densities. The mass splitting of $m^{*}_{n}>m^{*}_{p}$ and $m^{*}_{n}<m^{*}_{p}$ in nuclear matter and the different stiffness of symmetry energy are used in the model. The single and double neutron to proton ratios of free nucleons and light particles are thoroughly investigated in the isotopic nuclear reactions of $^{112}$Sn+$^{112}$Sn and $^{124}$Sn+$^{124}$Sn at the incident energies of 50 and 120 MeV/nucleon, respectively. It is found that the both effective mass splitting and symmetry energy impact the kinetic energy spectra of the single ratios, in particular at the high energy tail (larger than 20 MeV). Specific constraints are obtained from the double ratio spectra, which are evaluated from the ratios of isospin observables produced in $^{124}$Sn+$^{124}$Sn over $^{112}$Sn+$^{112}$Sn collisions. A mass splitting of $m^{*}_{n}<m^{*}_{p}$ is constrained from the available data at the energy of 120 MeV/nucleon. A soft symmetry energy with the stiffness of $gamma_{s}=$0.5 is close to the experimental double ratio spectra at both energies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا