ترغب بنشر مسار تعليمي؟ اضغط هنا

Fast optical source for quantum key distribution based on semiconductor optical amplifiers

230   0   0.0 ( 0 )
 نشر من قبل Marc Jofre
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A novel integrated optical source capable of emitting faint pulses with different polarization states and with different intensity levels at 100 MHz has been developed. The source relies on a single laser diode followed by four semiconductor optical amplifiers and thin film polarizers, connected through a fiber network. The use of a single laser ensures high level of indistinguishability in time and spectrum of the pulses for the four different polarizations and three different levels of intensity. The applicability of the source is demonstrated in the lab through a free space quantum key distribution experiment which makes use of the decoy state BB84 protocol. We achieved a lower bound secure key rate of the order of 3.64 Mbps and a quantum bit error ratio as low as $1.14times 10^{-2}$ while the lower bound secure key rate became 187 bps for an equivalent attenuation of 35 dB. To our knowledge, this is the fastest polarization encoded QKD system which has been reported so far. The performance, reduced size, low power consumption and the fact that the components used can be space qualified make the source particularly suitable for secure satellite communication.



قيم البحث

اقرأ أيضاً

197 - Masahiro Takeoka , Saikat Guha , 2015
Since 1984, various optical quantum key distribution (QKD) protocols have been proposed and examined. In all of them, the rate of secret key generation decays exponentially with distance. A natural and fundamental question is then whether there are y et-to-be discovered optical QKD protocols (without quantum repeaters) that could circumvent this rate-distance tradeoff. This paper provides a major step towards answering this question. We show that the secret-key-agreement capacity of a lossy and noisy optical channel assisted by unlimited two-way public classical communication is limited by an upper bound that is solely a function of the channel loss, regardless of how much optical power the protocol may use. Our result has major implications for understanding the secret-key-agreement capacity of optical channels---a long-standing open problem in optical quantum information theory---and strongly suggests a real need for quantum repeaters to perform QKD at high rates over long distances.
We report on an integrated photonic transmitter of up to 100 MHz repetition rate, which emits pulses centered at 850 nm with arbitrary amplitude and polarization. The source is suitable for free space quantum key distribution applications. The whole transmitter, with the optical and electronic components integrated, has reduced size and power consumption. In addition, the optoelectronic components forming the transmitter can be space-qualified, making it suitable for satellite and future space missions.
193 - Tarek A. Elsayed 2019
Quantum information and quantum foundations are becoming popular topics for advanced undergraduate courses. Many of the fundamental concepts and applications in these two fields, such as delayed choice experiments and quantum encryption, are comprehe nsible to undergraduates with basic knowledge of quantum mechanics. In this paper, we show that the quantum eraser, usually used to study the duality between wave and particle properties, can also serve as a generic platform for quantum key distribution. We present a pedagogical example of an algorithm to securely share random keys using the quantum eraser platform and propose its implementation with quantum circuits.
86 - Hao Shu 2021
Quantum key distribution(QKD) is one of the most significant areas in quantum information theory. For nearly four decades, substantial QKD protocols and cryptographic methods are developed. In early years, the security of QKD protocols is depend on s witching different bases, which, in fact, is based on non-orthogonal states. The most famous example is the BB84 protocol. Later, other techniques were developed for orthogonal states cryptography. Representations of such protocols include the GV protocol and order-rearrangement protocols. It might be harder to implement protocols based on orthogonal states since they require extra techniques to obtain the security. In this paper, we present two QKD protocols based on orthogonal states. One of them needs not to employ order-rearrangement techniques while the other needs. We give analyses of their security and efficiency. Also, anti-noisy discussions would be given, namely, we modify the protocols such that they could be implemented in noisy channels as in noiseless ones without errors. Our protocols are highly efficient when considering consumptions of both qubits and classical bits while they are robust over several noisy channels. Moveover, the requirement of maximally entangled states could be less than previous protocols and so the efficiency of measurements could be increased. Keywords: Quantum key distribution; Order-rearrangement; Orthogonal states; Noise; Qubit.
A quantum key distribution protocol based on time coding uses delayed one photon pulses with minimum time-frequency uncertainty product. Possible overlap between the pulses induces an ambiguous delay measurement and ensures a secure key exchange.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا