ﻻ يوجد ملخص باللغة العربية
Quantum key distribution(QKD) is one of the most significant areas in quantum information theory. For nearly four decades, substantial QKD protocols and cryptographic methods are developed. In early years, the security of QKD protocols is depend on switching different bases, which, in fact, is based on non-orthogonal states. The most famous example is the BB84 protocol. Later, other techniques were developed for orthogonal states cryptography. Representations of such protocols include the GV protocol and order-rearrangement protocols. It might be harder to implement protocols based on orthogonal states since they require extra techniques to obtain the security. In this paper, we present two QKD protocols based on orthogonal states. One of them needs not to employ order-rearrangement techniques while the other needs. We give analyses of their security and efficiency. Also, anti-noisy discussions would be given, namely, we modify the protocols such that they could be implemented in noisy channels as in noiseless ones without errors. Our protocols are highly efficient when considering consumptions of both qubits and classical bits while they are robust over several noisy channels. Moveover, the requirement of maximally entangled states could be less than previous protocols and so the efficiency of measurements could be increased. Keywords: Quantum key distribution; Order-rearrangement; Orthogonal states; Noise; Qubit.
The general conditions for the orthogonal product states of the multi-state systems to be used in quantum key distribution (QKD) are proposed, and a novel QKD scheme with orthogonal product states in the 3x3 Hilbert space is presented. We show that t
Quantum information and quantum foundations are becoming popular topics for advanced undergraduate courses. Many of the fundamental concepts and applications in these two fields, such as delayed choice experiments and quantum encryption, are comprehe
A quantum key distribution protocol based on time coding uses delayed one photon pulses with minimum time-frequency uncertainty product. Possible overlap between the pulses induces an ambiguous delay measurement and ensures a secure key exchange.
We report on a complete free-space field implementation of a modified Ekert91 protocol for quantum key distribution using entangled photon pairs. For each photon pair we perform a random choice between key generation and a Bell inequality. The amount
Quantum key distribution (QKD) is a crucial technology for information security in the future. Developing simple and efficient ways to establish QKD among multiple users are important to extend the applications of QKD in communication networks. Herei