ﻻ يوجد ملخص باللغة العربية
We report a study of the low-temperature thermal conductivity (kappa) of pure and Zn-doped LiCu_2O_2 single crystals. The kappa(T) of pure LiCu_2O_2 single crystal shows a double-peak behavior, with two peaks locating at 48 K and 14 K, respectively. The different dependences of the peaks on the Zn concentration indicate that the high-T peak is likely due to the phonon transport while the low-T one is attributed to the magnon transport in the spin spiral ordering state. In addition, the magnetic field can gradually suppress the low-T peak but does not affect the high-T one; this further confirms that the low-T peak is originated from the magnon heat transport.
Deterministic oscillations of current-induced metastable resistivity in changing voltage have been detected in La$_{0.82}$Ca$_{0.18}$MnO$_3$ single crystals. At low temperatures, below the Curie point, application of specific bias procedures switches
A strong increase of the thermal conductivity is observed at the phase transition (Tc =18.2 K) in Cu2Te2O5Cl2 single crystal. This behavior is compared with that of spin- Peierls system NaV2O5, where similar experimental observation has been found, a
Conductivity noise in dc current biased La_{0.82}Ca_{0.18}MnO_{3} single crystals has been investigated in different metastable resistivity states enforced by applying voltage pulses to the sample at low temperatures. Noise measured in all investigat
The trigonal compound EuMg2Bi2 has recently been discussed in terms of its topological band properties. These are intertwined with its magnetic properties. Here detailed studies of the magnetic, thermal, and electronic transport properties of EuMg2Bi
The transparent semiconductor In$_{2}$O$_{3}$ is a technologically important material. It combines optical transparency in the visible frequency range and sizeable electric conductivity. We present a study of thermal conductivity of In$_{2}$O$_{3}$ c