ﻻ يوجد ملخص باللغة العربية
We show that the dynamics of cold bosonic atoms in a two-dimensional square optical lattice produced by a bichromatic light-shift potential is described by a Bose-Hubbard model with an additional effective staggered magnetic field. In addition to the known uniform superfluid and Mott insulating phases, the zero-temperature phase diagram exhibits a novel kind of finite-momentum superfluid phase, characterized by a quantized staggered rotational flux. An extension for fermionic atoms leads to an anisotropic Dirac spectrum, which is relevant to graphene and high-$T_c$ superconductors.
We analyze topological properties of the one-dimensional Bose-Hubbard model with a quasiperiodic superlattice potential. This system can be realized in interacting ultracold bosons in optical lattice in the presence of an incommensurate superlattice
We propose to realize the anisotropic triangular-lattice Bose-Hubbard model with positive tunneling matrix elements by using ultracold atoms in an optical lattice dressed by a fast lattice oscillation. This model exhibits frustrated antiferromagnetis
Among the various numerical techniques to study the physics of strongly correlated quantum many-body systems, the self-energy functional approach (SFA) has become increasingly important. In its previous form, however, SFA is not applicable to Bose-Ei
We present a brief overview of the phases and dynamics of ultracold bosons in an optical lattice in the presence of a tilt. We begin with a brief summary of the possible experimental setup for generating the tilt. This is followed by a discussion of
Non-standard Bose-Hubbard models can exhibit rich ground state phase diagrams, even when considering the one-dimensional limit. Using a self-consistent Gutzwiller diagonalisation approach, we study the mean-field ground state properties of a long-ran