ترغب بنشر مسار تعليمي؟ اضغط هنا

Dependence of Single Particle Distributions on Rapidity and Centrality in d+Au Collisions at snn = 200 GeV

74   0   0.0 ( 0 )
 نشر من قبل Ramiro Debbe Dr
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English
 تأليف R. Debbe




اسأل ChatGPT حول البحث

Measurements of identified single particle distributions in d+Au collisions at snn = 200 GeV at the RHIC collider are described. The dependence of these distributions on the centrality of the collisions, as well as the rapidity of the detected particles are emphasized in this report.

قيم البحث

اقرأ أيضاً

We report the first measurement of the elliptic anisotropy ($v_2$) of the charm meson $D^0$ at mid-rapidity ($|y|$,$<$,1) in Au+Au collisions at sNN = 200,GeV. The measurement was conducted by the STAR experiment at RHIC utilizing a new high-resoluti on silicon tracker. The measured $D^0$ $v_2$ in 0--80% centrality Au+Au collisions can be described by a viscous hydrodynamic calculation for transverse momentum ($p_{rm T}$) less than 4,GeV/$c$. The $D^0$ $v_2$ as a function of transverse kinetic energy ($m_{rm T} - m_0$, where $m_{rm T} = sqrt{p_{rm T}^2 + m_0^2}$) is consistent with that of light mesons in 10--40% centrality Au+Au collisions. These results suggest that charm quarks have achieved local thermal equilibrium with the medium created in such collisions. Several theoretical models, with the temperature--dependent, dimensionless charm spatial diffusion coefficient ($2{pi}TD_s$) in the range of $sim$2--12, are able to simultaneously reproduce our $D^0$ $v_2$ result and our previously published results for the $D^0$ nuclear modification factor.
We report a new measurement of $D^0$-meson production at mid-rapidity ($|y|$,$<$,1) in Au+Au collisions at ${sqrt{s_{rm NN}} = rm{200,GeV}}$ utilizing the Heavy Flavor Tracker, a high resolution silicon detector at the STAR experiment. Invariant yi elds of $D^0$-mesons with transverse momentum $p_{T}$ $lesssim 9$,GeV/$c$ are reported in various centrality bins (0--10%, 10--20%, 20--40%, 40--60% and 60--80%). Blast-Wave thermal models are used to fit the $D^0$-meson $p_{T}$ spectra to study $D^0$ hadron kinetic freeze-out properties. The average radial flow velocity extracted from the fit is considerably smaller than that of light hadrons ($pi,K$ and $p$), but comparable to that of hadrons containing multiple strange quarks ($phi,Xi^-$), indicating that $D^0$ mesons kinetically decouple from the system earlier than light hadrons. The calculated $D^0$ nuclear modification factors re-affirm that charm quarks suffer large amount of energy loss in the medium, similar to those of light quarks for $p_{T}$,$>$,4,GeV/$c$ in central 0--10% Au+Au collisions. At low $p_{T}$, the nuclear modification factors show a characteristic structure qualitatively consistent with the expectation from model predictions that charm quarks gain sizable collective motion during the medium evolution. The improved measurements are expected to offer new constraints to model calculations and help gain further insights into the hot and dense medium created in these collisions.
71 - B.B.Back , et al 2004
We have measured the transverse momentum distributions of charged hadrons in d+Au collisions at sqrt sNN = 200 GeV in the range of 0.5 < p_T < 4.0 GeV/c. The total range of pseudorapidity, eta, is 0.2 < eta < 1.4, where positive eta is in the deutero n direction. The data has been divided into three regions of pseudorapidity, covering 0.2 < eta < 0.6, 0.6 < eta < 1.0, and 1.0 < eta < 1.4 and has been compared to charged hadron spectra from p+pbar collisions at the same energy. There is a significant change in the spectral shape as a function of pseudorapidity. As eta increases we see a decrease in the nuclear modification factor RdAu.
56 - STAR Collaboration 2006
We determine rapidity asymmetry in the production of charged pions, protons and anti-protons for large transverse momentum (pT) for d+Au collisions at sqrt s_NN = 200 GeV. The identified hadrons are measured in the rapidity regions |y| < 0.5 and 0.5 < |y| < 1.0 for the pT range 2.5 < pT < 10 GeV/c. We observe significant rapidity asymmetry for charged pion and proton+anti-proton production in both rapidity regions. The asymmetry is larger for 0.5 < |y| < 1.0 than for |y|< 0.5 and is almost independent of particle type. The measurements are compared to various model predictions employing multiple scattering, energy loss, nuclear shadowing, saturation effects, and recombination, and also to a phenomenological parton model. We find that asymmetries are sensitive to model parameters and show model-preference. The rapidity dependence of pi^{-}/pi^{+} and bar{p}/p ratios in peripheral d+Au and forward neutron-tagged events are used to study the contributions of valence quarks and gluons to particle production at high pT. The results are compared to calculations based on NLO pQCD and other measurements of quark fragmentation functions.
We have measured the distributions of protons and deuterons produced in high energy heavy ion Au+Au collisions at RHIC over a very wide range of transverse and longitudinal momentum. Near mid-rapidity we have also measured the distribution of anti-pr otons and anti-deuterons. We present our results in the context of coalescence models. In particular we extract the volume of homogeneity and the average phase-space density for protons and anti-protons. Near central rapidity the coalescence parameter $B_2(p_T)$ and the space averaged phase-space density $<f> (p_T)$ are very similar for both protons and anti-protons. For protons we see little variation of either $B_2(p_T)$ or the space averaged phase-space density as the rapidity increases from 0 to 3. However both these quantities depend strongly on $p_T$ at all rapidities. These results are in contrast to lower energy data where the proton and anti-proton phase-space densities are different at $y$=0 and both $B_2$ and $f$ depend strongly on rapidity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا