ترغب بنشر مسار تعليمي؟ اضغط هنا

The Globular Cluster Systems of Abell 1185

264   0   0.0 ( 0 )
 نشر من قبل Michael J. West
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We examine the properties of a previously discovered population of globular clusters in the heart of the rich galaxy cluster Abell 1185 that might be intergalactic in nature. Deep images obtained with the Advanced Camera for Surveys (ACS) aboard Hubble Space Telescope (HST) confirm the presence of ~ 1300 globular clusters brighter than I_{F814W} = 27.3 mag in a field devoid of any large galaxies. The luminosities and colors of these objects are found to be similar to those of metal-poor globular clusters observed in many galaxies to date. Although a significant fraction of the detected globular clusters undoubtedly reside in the outer halos of galaxies adjacent to this field, detailed modeling of their distribution suggests that the majority of these objects are likely to be intergalactic, in the sense that they are not gravitationally bound to any individual galaxy. We conclude that the true nature and origin of the globular cluster population in the core of A1185 -- galactic residents or intergalactic wanderers -- remains uncertain, and suggest how future observation could resolve this ambiguity.

قيم البحث

اقرأ أيضاً

We study the rich globular cluster (GC) system in the center of the massive cluster of galaxies Abell 1689 (z=0.18), one of the most powerful gravitational lenses known. With 28 HST/ACS orbits in the F814W bandpass, we reach magnitude I_814=29 with > 90% completeness and sample the brightest ~5% of the GC system. Assuming the well-known Gaussian form of the GC luminosity function (GCLF), we estimate a total population of N(GC_total) = 162,850 GCs within a projected radius of 400kpc. As many as half may comprise an intracluster component. Even with the sizable uncertainties, which mainly result from the uncertain GCLF parameters, this is by far the largest GC system studied to date. The specific frequency S_N is high, but not uncommon for central galaxies in massive clusters, rising from S_N~5 near the center to ~12 at large radii. Passive galaxy fading would increase S_N by ~20% at z=0. We construct the radial mass profiles of the GCs, stars, intracluster gas, and lensing-derived total mass, and we compare the mass fractions as a function of radius. The estimated mass in GCs, M(GC_total)=3.9x10^10 Msun, is comparable to ~80% of the total stellar mass of the Milky Way. The shape of the GC mass profile appears intermediate between those of the stellar light and total cluster mass. Despite the extreme nature of this system, the ratios of the GC mass to the baryonic and total masses, and thus the GC formation efficiency, are typical of those in other rich clusters when comparing at the same physical radii. The GC formation efficiency is not constant, but varies with radius, in a manner that appears similar for different clusters; we speculate on the reasons for this similarity in profile.
171 - S. Mieske , A. Jordan , P. Cote 2010
We investigate the color-magnitude relation for globular clusters (GCs) -- the so-called blue tilt -- detected in the ACS Fornax Cluster Survey and using the combined sample of GCs from the ACS Fornax and Virgo Cluster Surveys. We find a tilt of gamm a_z=d(g-z)/dz=-0.0257 +- 0.0050 for the full GC sample of the Fornax Cluster Survey (~5800 GCs). This is slightly shallower than the value gamma_z=-0.0459 +- 0.0048 found for the Virgo Cluster Survey GC sample (~11100 GCs). The slope for the merged Fornax and Virgo datasets (~16900 GCs) is gamma_z=-0.0293 +- 0.0085, corresponding to a mass-metallicity relation of Z ~ M^0.43. We find that the blue tilt sets in at GC masses in excess of M ~ 2*10^5 M_sun. The tilt is stronger for GCs belonging to high-mass galaxies (M_* > 5 * 10^10 M_sun) than for those in low-mass galaxies (M_* < 5 * 10^10 M_sun). It is also more pronounced for GCs with smaller galactocentric distances. Our findings suggest a range of mass-metallicity relations Z_GC ~ M_GC^(0.3-0.7) which vary as a function of host galaxy mass/luminosity. We compare our observations to a recent model of star cluster self-enrichment with generally favorable results. We suggest that, within the context of this model, the proto-cluster clouds out of which the GCs formed may have had density profiles slightly steeper than isothermal and/or star formation efficiencies somewhat below 0.3. We caution, however, that the significantly different appearance of the CMDs defined by the GC systems associated with galaxies of similar mass and morphological type pose a challenge to any single mechanism that seeks to explain the blue tilt. We therefore suggest that the merger/accretion histories of individual galaxies have played a non-negligible role determining the distribution of GCs in the CMDs of individual GC systems.
The dynamics of globular cluster systems (GCSs) around galaxies are often used to assess the total enclosed mass, and even to constrain the dark matter distribution. The globular cluster system of a galaxy is typically assumed to be in dynamical equi librium within the potential of the host galaxy. However cluster galaxies are subjected to a rapidly evolving and, at times, violently destructive tidal field. We investigate the impact of the harassment on the dynamics of GCs surrounding early type cluster dwarfs, using numerical simulations. We find that the dynamical behaviour of the GCS is strongly influenced by the fraction of bound dark matter f_{DM} remaining in the galaxy. Only when f_{DM} falls to ~15%, do stars and GCs begin to be stripped. Still the observed GC velocity dispersion can be used to measure the true enclosed mass to within a factor of 2, even when f_{DM} falls as low as ~3%. This is possible partly because unbound GCs quickly separate from the galaxy body. However even the distribution of {it{bound}} GCs may spatially expand by a factor of 2-3. Once f_{DM} falls into the <3% regime, the galaxy is close to complete disruption, and GCS dynamics can no longer be used to reliably estimate the enclosed mass. In this regime, the remaining bound GCS may spatially expand by a factor of 4 to 8. It may be possible to test if a galaxy is in this regime by measuring the dynamics of the stellar disk. We demonstrate that if a stellar disk is rotationally supported, it is likely that a galaxy has sufficient dark matter, that the dynamics of the GCS can be used to reliably estimate the enclosed mass.
We present 1.4 GHz catalogs for the cluster fields Abell 370 and Abell 2390 observed with the Very Large Array. These are two of the deepest radio images of cluster fields ever taken. The Abell 370 image covers an area of 40x40 with a synthesized bea m of ~1.7 and a noise level of ~5.7 uJy near field center. The Abell 2390 image covers an area of 34x34 with a synthesized beam of ~1.4 and a noise level of ~5.6 uJy near field center. We catalog 200 redshifts for the Abell 370 field. We construct differential number counts for the central regions (radius < 16) of both clusters. We find that the faint (S_1.4GHz < 3 mJy) counts of Abell 370 are roughly consistent with the highest blank field number counts, while the faint number counts of Abell 2390 are roughly consistent with the lowest blank field number counts. Our analyses indicate that the number counts are primarily from field radio galaxies. We suggest that the disagreement of our counts can be largely attributed to cosmic variance.
Diffuse radio emission in galaxy clusters, and their connection with cluster mergers, are still debated. We seek to explore the internal dynamics of the radio halo cluster Abell 545. This cluster is also peculiar for hosting in its center a very brig ht, red, diffuse intracluster light due to an old, stellar population, so bright to be named as star pile. Our analysis is based on redshift data for 110 galaxies. We identify 95 cluster members and analyze the cluster internal dynamics by combining galaxy velocities and positions. We also use both photometric and X-ray data. We estimate the cluster redshift, z=0.1580, a velocity dispersion of 1200 km/s, and ICM temperature kT_X~8 keV. Our optical and X-ray analyses detect substructures. Optical data reveal three main galaxy clumps (center, NNW, and NE), and possibly a fourth clump at South. There is not a dominant galaxy and the four brightest galaxies avoid the cluster core (>~0.4h distant from the cluster center) and are >~1500 km/s far from the mean cluster velocity. The analysis of the X-ray surface brightness distribution provides us evidence of a disturbed dynamical phase. Located in the star pile region there is the brightest galaxies of the cluster core (CBCG) and a very compact elliptical galaxy. We show that the star pile has a similar redshift to that of the CBCG. Both the star pile and the CBCG are at rest in the cluster rest frame. The emerging picture of Abell 545 is that of a massive, M(R<1.6 h_70^-1 Mpc)=1.1-1.8x10^15 h_70^-1 Msun, very complex cluster with merging occurring along two directions. A545 gives another proof in the favor of the connection between cluster merger and extended, diffuse radio emission. The star pile, likely due to the process of a brightest galaxy forming in the cluster core. A545 represents a textbook cluster where to study the simultaneous formation of a galaxy system and its brightest galaxy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا