ترغب بنشر مسار تعليمي؟ اضغط هنا

VLA 1.4 GHz Catalogs of the Abell 370 and Abell 2390 Cluster Fields

115   0   0.0 ( 0 )
 نشر من قبل Isak Wold
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present 1.4 GHz catalogs for the cluster fields Abell 370 and Abell 2390 observed with the Very Large Array. These are two of the deepest radio images of cluster fields ever taken. The Abell 370 image covers an area of 40x40 with a synthesized beam of ~1.7 and a noise level of ~5.7 uJy near field center. The Abell 2390 image covers an area of 34x34 with a synthesized beam of ~1.4 and a noise level of ~5.6 uJy near field center. We catalog 200 redshifts for the Abell 370 field. We construct differential number counts for the central regions (radius < 16) of both clusters. We find that the faint (S_1.4GHz < 3 mJy) counts of Abell 370 are roughly consistent with the highest blank field number counts, while the faint number counts of Abell 2390 are roughly consistent with the lowest blank field number counts. Our analyses indicate that the number counts are primarily from field radio galaxies. We suggest that the disagreement of our counts can be largely attributed to cosmic variance.


قيم البحث

اقرأ أيضاً

90 - Sandor M. Molnar , 2020
We study the dynamics of Abell 370 (A370), a highly massive Hubble Frontier Fields galaxy cluster, using self-consistent three-dimensional N-body/hydrodynamical simulations. Our simulations are constrained by X-ray, optical spectroscopic and gravitat ional lensing, and Sunyaev-Zeldovich (SZ) effect observations. Analyzing archival Chandra observations of A370 and comparing the X-ray morphology to the latest gravitational lensing mass reconstruction, we find offsets of ~30 kpc and ~100 kpc between the two X-ray surface brightness peaks and their nearest mass surface density peaks, suggesting that it is a merging system, in agreement with previous studies. Based on our dedicated binary cluster merger simulations, we find that initial conditions of the two progenitors with virial masses of 1.7 x 10^(15) M_sun and 1.6 x 10^(15) M_sun, an infall velocity of 3500 km/s, and an impact parameter of 100 kpc can explain the positions and the offsets between the peaks of the X-ray emission and mass surface density, the amplitude of the integrated SZ signal, and the observed relative line-of-sight velocity. Moreover, our best model reproduces the observed velocity dispersion of cluster member galaxies, which supports the large total mass of A370 derived from weak lensing. Our simulations suggest that A370 is a major merger after the second core passage in the infalling phase, just before the third core passage. In this phase, the gas has not settled down in the gravitational potential well of the cluster, which explains why A370 does not follow closely the galaxy cluster scaling relations.
We present deep VLA observations of the merging galaxy cluster Abell 2256. This cluster is known to possess diffuse steep spectrum radio relic emission in the peripheral regions. Our new observations provide the first detailed image of the central di ffuse radio halo emission in this cluster. The radio halo extends over more than 800 kpc in the cluster core, while the relic emission covers a region of ~1125 x 520 kpc. A spectral index map of the radio relic shows a spectral steepening from the northwest toward the southeast edge of the emission, with an average spectral index between 1369 MHz and 1703 MHz of -1.2 across the relic. Polarization maps reveal high fractional polarization of up to 45% in the relic region with an average polarization of 20% across the relic region. The observed Faraday rotation measure is consistent with the Galactic estimate and the dispersion in the rotation measure is small, suggesting that there is very little contribution to the rotation measure of the relic from the intracluster medium. We use these Faraday properties of the relic to argue that it is located on the front side of the cluster.
We present a strong lensing analysis of the galaxy cluster Abell 370 (z=0.375) based on the recent multicolor ACS images obtained as part of the Early Release Observation (ERO) that followed the Hubble Service Mission #4. Back in 1987, the giant grav itational arc (z=0.725) in Abell 370 was one of the first pieces of evidence that massive clusters are dense enough to act as strong gravitational lenses. The new observations reveal in detail its disklike morphology, and we show that it can be interpreted as a complex five-image configuration, with a total magnification factor of 32+/-4. Moreover, the high resolution multicolor information allowed us to identify 10 multiply imaged background galaxies. We derive a mean Einstein radius of RE=39+/-2 for a source redshift at z=2, corresponding to a mass of M(<RE) = 2.82+/-0.15 1e14 Msol and M(<250 kpc)=3.8+/-0.2 1e14 Msol, in good agreement with Subaru weak-lensing measurements. The typical mass model error is smaller than 5%, a factor 3 of improvement compared to the previous lensing analysis. Abell 370 mass distribution is confirmed to be bi-modal with very small offset between the dark matter, the X-ray gas and the stellar mass. Combining this information with the velocity distribution reveals that Abell 370 is likely the merging of two equally massive clusters along the line of sight, explaining the very high mass density necessary to efficiently produce strong lensing. These new observations stress the importance of multicolor imaging for the identification of multiple images which is key to determining an accurate mass model. The very large Einstein radius makes Abell 370 one of the best clusters to search for high redshift galaxies through strong magnification in the central region.
Cluster mergers leave distinct signatures in the ICM in the form of shocks and diffuse cluster radio sources that provide evidence for the acceleration of relativistic particles. However, the physics of particle acceleration in the ICM is still not f ully understood. Here we present new 1-4 GHz Jansky Very Large Array (VLA) and archival Chandra observations of the HST Frontier Fields Cluster Abell 2744. In our new VLA images, we detect the previously known $sim2.1$ Mpc radio halo and $sim1.5$ Mpc radio relic. We carry out a radio spectral analysis from which we determine the relics injection spectral index to be $alpha_{rm{inj}} = -1.12 pm 0.19$. This corresponds to a shock Mach number of $mathcal{M}$ = 2.05$^{+0.31}_{-0.19}$ under the assumption of diffusive shock acceleration. We also find evidence for spectral steepening in the post-shock region. We do not find evidence for a significant correlation between the radio halos spectral index and ICM temperature. In addition, we observe three new polarized diffuse sources and determine two of these to be newly discovered giant radio relics. These two relics are located in the southeastern and northwestern outskirts of the cluster. The corresponding integrated spectral indices measure $-1.81 pm 0.26$ and $-0.63 pm 0.21$ for the SE and NW relics, respectively. From an X-ray surface brightness profile we also detect a possible density jump of $R=1.39^{+0.34}_{-0.22}$ co-located with the newly discovered SE relic. This density jump would correspond to a shock front Mach number of $mathcal{M}=1.26^{+0.25}_{-0.15}$.
Most sub-mm emission line studies of galaxies to date have targeted sources with known redshifts where the frequencies of the lines are well constrained. Recent blind line scans circumvent the spectroscopic redshift requirement, which could represent a selection bias. Our aim is to detect emission lines present in continuum oriented observations. The detection of such lines provides spectroscopic redshift and yields properties of the galaxies. We perform a search for emission lines in the ALMA observations of five Frontier Fields clusters and assess the reliability of our detection by associating line candidates with detected galaxies in deep near-infrared imaging. We find 26 significant emission lines candidates, with observed line fluxes between 0.2-4.6 Jy km s$^{-1}$ and velocity dispersions (FWHM) of 25-600 km s$^{-1}$. Nine of these candidates lie nearby to near-infrared sources, boosting their reliability; in six cases the observed line frequency and strength are consistent with expectations given the photometric redshift and properties of the galaxy counterparts. We present redshift identifications, magnifications and molecular gas estimates for the galaxies with identified lines. We show that two of these candidates likely originate from starburst galaxies, one of which is a jellyfish galaxy, while another two are consistent with being main sequence galaxies based in their depletion times. This work highlights the degree to which serendipitous emission lines can be discovered in large mosaic continuum observations when deep ancillary data are available. The low number of high-significance line detections, however, confirms that such surveys are not as optimal as blind line scans. We stress that Monte Carlo simulations should be used to assess the line detections significances, since using the negative noise suffers from stochasticity and incurs larger uncertainties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا