ﻻ يوجد ملخص باللغة العربية
We study terahertz radiation induced ratchet currents in low dimensional semiconductor structures with a superimposed one-dimensional lateral periodic potential. The periodic potential is produced by etching a grating into the sample surface or depositing metal stripes periodically on the sample top. Microscopically, the photocurrent generation is based on the combined action of the lateral periodic potential, verified by transport measurements, and the in-plane modulated pumping caused by the lateral superlattice. We show that a substantial part of the total current is caused by the polarization-independent Seebeck ratchet effect. In addition, polarization-dependent photocurrents occur, which we interpret in terms of their underlying microscopical mechanisms. As a result, the class of ratchet systems needs to be extended by linear and circular ratchets, sensitive to linear and circular polarizations of the driving electro-magnetic force.
Experimental and theoretical studies on ratchet effects in graphene with a lateral superlattice excited by alternating electric fields of terahertz frequency range are presented. A lateral superlatice deposited on top of monolayer graphene is formed
The predicted formation of moire superlattices leading to confined excitonic states in heterostructures formed by stacking two lattice mismatched transition metal dichalcogenide (TMD) monolayers was recently experimentally confirmed. Such periodic po
We report on the observation of the magnetic quantum ratchet effect in graphene with a lateral dual-grating top gate (DGG) superlattice. We show that the THz ratchet current exhibits sign-alternating magneto-oscillations due to the Shubnikov-de Haas
We investigate a one-dimensional electron liquid with two point scatterers of different strength. In the presence of electron interactions, the nonlinear conductance is shown to depend on the current direction. The resulting asymmetry of the transpor
We predict spontaneous generation of superfluid polariton currents in planar microcavities with lateral periodic modulation of both potential and decay rate. A spontaneous breaking of spatial inversion symmetry of a polariton condensate emerges at a