ﻻ يوجد ملخص باللغة العربية
We investigate a one-dimensional electron liquid with two point scatterers of different strength. In the presence of electron interactions, the nonlinear conductance is shown to depend on the current direction. The resulting asymmetry of the transport characteristic gives rise to a ratchet effect, i.e., the rectification of a dc current for an applied ac voltage. In the case of strong repulsive interactions, the ratchet current grows in a wide voltage interval with decreasing ac voltage. In the regime of weak interaction the current-voltage curve exhibits oscillatory behavior. Our results apply to single-band quantum wires and to tunneling between quantum Hall edges.
We consider arrays of Luttinger liquids, where each node is described by a unitary scattering matrix. In the limit of small electron-electron interaction, we study the evolution of these scattering matrices as the high-energy single particle states a
We study a dynamic boundary, e.g. a mobile impurity, coupled to N independent Tomonaga-Luttinger liquids (TLLs) each with interaction parameter K. We demonstrate that for N>2 there is a quantum phase transition at K>1/2, where the TLL phases lock tog
Using a particle-based model, we simulate the behavior of a skyrmion under the influence of asymmetric funnel geometries and ac driving at zero temperature. We specifically investigate possibilities for controlling the skyrmion motion by harnessing a
In this work we discuss extensions of the pioneering analysis by Dzyaloshinskii and Larkin of correlation functions for one-dimensional Fermi systems, focusing on the effects of quasiparticle relaxation enabled by a nonlinear dispersion. Throughout t
We study the DC spin current induced into an unbiased quantum spin Hall system through a two-point contacts setup with time dependent electron tunneling amplitudes. By means of two external gates, it is possible to drive a current with spin-preservin