ﻻ يوجد ملخص باللغة العربية
We study the low energy effective action for the collective modes of the color flavor locked phase of QCD. This phase of matter has long been known to be a superfluid because by picking a phase its order parameter breaks the quark-number $U(1)_B$ symmetry spontaneously. We consider the modes describing fluctuations in the magnitude of the condensate, namely the Higgs mode, and in the phase of the condensate, namely the Nambu-Goldstone (or Anderson-Bogoliubov) mode associated with the breaking of $U(1)_B$. By employing as microscopic theory the Nambu-Jona Lasinio model, we reproduce known results for the Lagrangian of the Nambu-Goldstone field to the leading order in the chemical potential and extend such results evaluating corrections due to the gap parameter. Moreover, we determine the interaction terms between the Higgs and the Nambu-Goldstone field. This study paves the way for a more reliable study of various dissipative processes in rotating compact stars with a quark matter core in the color flavor locked phase.
We show that the magnetization in color-flavor locked superconductors can be so strong that homogeneous quark matter becomes metastable for a wide range of magnetic field values. This indicates that magnetic domains or other type of magnetic inhomoge
We give a very brief overview of collective effects in neutrino oscillations in core collapse supernovae where refractive effects of neutrinos on themselves can considerably modify flavor oscillations, with possible repercussions for future supernova
We investigate the importance of going beyond the mean-field approximation in the dynamics of collective neutrino oscillations. To expand our understanding of the coherent neutrino oscillation problem, we apply concepts from many-body physics and qua
We study a $(3+1)$-dimensional $U(N)$ gauge theory with $N$-flavor fundamental scalar fields, whose color-flavor locked (CFL) phase has topologically stable non-Abelian vortices. The $U(1)$ charge of the scalar fields must be $Nk+1$ for some integer
Several attempts have been made in the past decades to search for the true ground state of the dense matter at sufficiently large densities and low temperatures via compact astrophysical objects. Focusing on strange stars, we derive the hydrostatic e