ﻻ يوجد ملخص باللغة العربية
Of the many ways of detecting high redshift galaxies, the selection of objects due to their redshifted Ly-alpha emission has become one of the most successful. But what types of galaxies are selected in this way? Until recently, Ly-alpha emitters were understood to be small star-forming galaxies, possible building-blocks of larger galaxies. But with increased number of observations of Ly-alpha emitters at lower redshifts, a new picture emerges. Ly-alpha emitters display strong evolution in their properties from higher to lower redshift. It has previously been shown that the fraction of ultra-luminous infrared galaxies (ULIRGs) among the Ly-alpha emitters increases dramatically between redshift three and two. Here, the fraction of AGN among the LAEs is shown to follow a similar evolutionary path. We argue that Ly-alpha emitters are not a homogeneous class of objects, and that the objects selected with this method reflect the general star forming and active galaxy populations at that redshift. Ly-alpha emitters should hence be excellent tracers of galaxy evolution in future simulations and modeling.
This publication contains the conference summary of the Understanding Lyman-alpha Emitters conference held at the Max Planck Institute for Astronomy in Heidelberg October 6 - 10, 2008. The scope of the conference was to bring together most of the sci
We study the multi-wavelength properties of a set of 171 Ly-alpha emitting candidates at redshift z = 2.25 found in the COSMOS field, with the aim of understanding the underlying stellar populations in the galaxies. We especially seek to understand w
We study the far-infrared properties of 498 Lyman Alpha Emitters (LAEs) at z=2.8, 3.1 and 4.5 in the Extended Chandra Deep Field-South, using 250, 350 and 500 micron data from the Herschel Multi-tiered Extragalactic Survey (HerMES) and 870 micron dat
We present a simple physical model for populating dark matter halos with Lyman Alpha Emiiters(LAEs) and predict the physical properties of LAEs at z~3-7. The central tenet of this model is that the Ly-alpha luminosity is proportional to the star form
The Lyman-alpha (Lya) recombination line is a fundamental tool for galaxy evolution studies and modern observational cosmology. However, subsequent interpretations are still prone to a number of uncertainties. Besides numerical efforts, empirical dat