ترغب بنشر مسار تعليمي؟ اضغط هنا

The nature of z ~ 2.3 Lyman-alpha emitters

125   0   0.0 ( 0 )
 نشر من قبل Kim Nilsson
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Kim K. Nilsson




اسأل ChatGPT حول البحث

We study the multi-wavelength properties of a set of 171 Ly-alpha emitting candidates at redshift z = 2.25 found in the COSMOS field, with the aim of understanding the underlying stellar populations in the galaxies. We especially seek to understand what the dust contents, ages and stellar masses of the galaxies are, and how they relate to similar properties of Ly-alpha emitters at other redshifts. The candidates here are shown to have different properties from those of Ly-alpha emitters found at higher redshift, by fitting the spectral energy distributions (SEDs) using a Monte-Carlo Markov-Chain technique and including nebular emission in the spectra. The stellar masses, and possibly the dust contents, are higher, with stellar masses in the range log M_* = 8.5 - 11.0 M_sun and A_V = 0.0 - 2.5 mag. Young population ages are well constrained, but the ages of older populations are typically unconstrained. In 15% of the galaxies only a single, young population of stars is observed. We show that the Ly-alpha fluxes of the best fit galaxies are correlated with their dust properties, with higher dust extinction in Ly-alpha faint galaxies. Testing for whether results derived from a light-weighted stack of objects correlate to those found when fitting individual objects we see that stellar masses are robust to stacking, but ages and especially dust extinctions are derived incorrectly from stacks. We conclude that the stellar properties of Ly-alpha emitters at z = 2.25 are different from those at higher redshift and that they are diverse. Ly-alpha selection appears to be tracing systematically different galaxies at different redshifts.



قيم البحث

اقرأ أيضاً

We present the results of the extensive narrow-band survey of Lyalpha emission-line objects at z=3.1 in the 1.38 deg^2 area surrounding the high density region of star-forming galaxies at z=3.09 in the SSA22 field, as well as in the 1.04 deg^2 area o f the three separated general blank fields. In total of 2161 Lyalpha emitters, 1394 in the SSA22 fields and 767 in the general fields, respectively, are detected to the narrow-band AB magnitude limit of 25.73, which corresponds to the line flux of 1.8 x 10^{-17} erg s^{-1} cm^{-2} or luminosity of 1.5 x 10^{42} erg s^{-1} at z=3.1, above the observed equivalent width threshold, 190AA . The average surface number density of the emitters at z=3.1 in the whole general fields above the thresholds is 0.20+-0.01 arcmin^{-2}. The SSA22 high-density region at z=3.09 whose peak local density is 6 times the average is found to be the most prominent outstanding structure in the whole surveyed area and is firmly identified as a robust `protocluster with the enough large sample. We also compared the overdensity of the 100 arcmin^2 and 700 arcmin^2 areas which contain the protocluster with the expected fluctuation of the dark matter as well as those of the model galaxies in cosmological simulations. We found that the peak height values of the overdensity correspond to be 8-10 times and 3-4 times of the expected standard deviations of the counts of Lyalpha emitters at z=3.1 in the corresponding volume, respectively. We conclude that the structure at z=3.09 in the SSA22 field is a very significant and rare density peak up to the scale of 60 Mpc.
130 - Vithal Tilvi 2010
Lyman alpha (Lya) emission lines should be attenuated in a neutral intergalactic medium (IGM). Therefore the visibility of Lya emitters at high redshifts can serve as a valuable probe of reionization at about the 50% level. We present an imaging sear ch for z=7.7 Lya emitting galaxies using an ultra-narrowband filter (filter width= 9A) on the NEWFIRM imager at the Kitt Peak National Observatory. We found four candidate Lya emitters in a survey volume of 1.4 x 10^4 Mpc^3, with a line flux brighter than 6x10^-18 erg/cm^2/s (5 sigma in 2 aperture). We also performed a detailed Monte-Carlo simulation incorporating the instrumental effects to estimate the expected number of Lya emitters in our survey, and found that we should expect to detect one Lya emitter, assuming a non-evolving Lya luminosity function (LF) between z=6.5 and z=7.7. Even if one of the present candidates is spectroscopically confirmed as a z~8 Lya emitter, it would indicate that there is no significant evolution of the Lya LF from z=3.1 to z~8. While firm conclusions would need both spectroscopic confirmations and larger surveys to boost the number counts of galaxies, we successfully demonstrate the feasibility of sensitive near-infrared (1.06 um) narrow-band searches using custom filters designed to avoid the OH emission lines that make up most of the sky background.
This publication contains the conference summary of the Understanding Lyman-alpha Emitters conference held at the Max Planck Institute for Astronomy in Heidelberg October 6 - 10, 2008. The scope of the conference was to bring together most of the sci entists working in the field of Lyman-alpha emitters, whether at low or high redshift, or on observational or theoretical aspects, and to summarise how far the field of study of galaxies with Lyman-alpha emission has come. An outlook towards the future of the field was also desired. As part of the conference, two days were dedicated to in total six discussion sessions. The topics were i) new methods and selection methods, ii) morphology, iii) what can the local Universe observations tell us about the high redshift Universe?, iv) clustering, v) SED fitting and vi) Ly-alpha blobs. The chairs of those sessions were asked to summarise the discussions, as presented in these proceedings.
158 - Y. Matsuda 2012
Using stacks of Ly-a images of 2128 Ly-a emitters (LAEs) and 24 protocluster UV-selected galaxies (LBGs) at z=3.1, we examine the surface brightness profiles of Ly-a haloes around high-z galaxies as a function of environment and UV luminosity. We fin d that the slopes of the Ly-a radial profiles become flatter as the Mpc-scale LAE surface densities increase, but they are almost independent of the central UV luminosities. The characteristic exponential scale lengths of the Ly-a haloes appear to be proportional to the square of the LAE surface densities (r(Lya) propto Sigma(LAE)^2). Including the diffuse, extended Ly-a haloes, the rest-frame Ly-a equivalent width of the LAEs in the densest regions approaches EW_0(Lya) ~ 200 A, the maximum value expected for young (< 10^7 yr) galaxies. This suggests that Ly-a photons formed via shock compression by gas outflows or cooling radiation by gravitational gas inflows may partly contribute to illuminate the Ly-a haloes; however, most of their Ly-a luminosity can be explained by photo-ionisation by ionising photons or scattering of Ly-a photons produced in HII regions in and around the central galaxies. Regardless of the source of Ly-a photons, if the Ly-a haloes trace the overall gaseous structure following the dark matter distributions, it is not surprising that the Ly-a spatial extents depend more strongly on the surrounding Mpc-scale environment than on the activities of the central galaxies.
95 - Yujin Yang 2010
Understanding the nature of distant Ly-alpha nebulae (blobs) and connecting them to their present-day descendants requires constraining their number density, clustering, and large-scale environment. To measure these basic quantities, we conduct a dee p narrowband imaging survey in four different fields, Chandra Deep Field South (CDFS), Chandra Deep Field North, and two COSMOS subfields, for a total survey area of 1.2deg^2. We discover 25 blobs at z=2.3 with Ly-alpha luminosities of 0.7-8x10^43 erg/s and isophotal areas of Aiso = 10-60 arcsec^2. The transition from compact Ly-alpha emitters (Aiso ~ a few arcsec^2) to extended blobs (Aiso > 10 arcsec^2) is continuous, suggesting a single family perhaps governed by similar emission mechanisms. Surprisingly, most blobs (16/25) are in one survey field, the CDFS. The six brightest, largest blobs with L > 1.5x10^43 erg/s and Aiso > 16 arcsec^2 lie only in the CDFS. These large, bright blobs have a field-to-field variance of sigma_v >~ 1.5 (150%) about their number density n ~ 1.0x10^-5 Mpc^-3. This variance is large, significantly higher than that of unresolved LAEs (sigma_v ~ 0.3 or 30%), and can adversely affect comparisons of blob number densities and luminosity functions among different surveys. We compare the statistics of our blobs with dark matter halos in a 1 Gpc/h cosmological N-body simulation. At z=2.3, the number density (n) implies that each bright, large blob could occupy a halo of M_halo > 10^13 Msun if most halos have detectable blobs. The predicted variance in n is consistent with that observed and corresponds to a bias of ~7. Blob halos lie at the high end of the halo mass distribution at z=2.3 and are likely to evolve into the ~10^14 Msun halos typical of galaxy clusters today. On larger scales of ~10 co-moving Mpc, blobs cluster where compact LAEs do, indicating that blobs lie in coherent, highly overdense structures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا