ﻻ يوجد ملخص باللغة العربية
Systematic ab initio calculations show that the energy gap of boron nitride (BN) nanoribbons (BNNRs) with zigzag or armchair edges can be significantly reduced by a transverse electric field and completely closed at a critical field which decreases with increasing ribbon width. In addition, a distinct gap modulation in the ribbons with zigzag edges is presented when a reversed electric field is applied. In a weak field, the gap reduction of the BNNRs with zigzag edges originates from the field-induced energy level shifts of the spatially separated edge-states, while the gap reduction of the BNNRs with armchair edges arises from the Stark effect. As the field gets stronger, the energy gaps of both types of the BNNRs gradually close due to the field-induced motion of nearly free electron states. Without the applied fields, the energy gap modulation by varying ribbon width is rather limited.
We present results for the optical absorption spectra of small-diameter single-wall carbon and boron nitride nanotubes obtained by {it ab initio} calculations in the framework of time-dependent density functional theory. We compare the results with t
A recent study associate carbon with single photon emitters (SPEs) in hexagonal boron nitride (h-BN). This observation, together with the high mobility of carbon in h-BN suggest the existence of SPEs based on carbon clusters. Here, by means of densit
First-principles calculations reveal half metallicity in zigzag boron nitride (BN) nanoribbons (ZBNNRs). When the B edge, but not the N edge, of the ZBNNR is passivated, despite being a pure $sp$-electron system, the ribbon shows a giant spin splitti
We have given a summary on our theoretical predictions of three kinds of topological semimetals (TSMs), namely, Dirac semimetal (DSM), Weyl semimetal (WSM) and Node-Line Semimetal (NLSM). TSMs are new states of quantum matters, which are different wi
Phonon Hall effect (PHE) has attracted a lot of attention in recent years with many theoretical and experimental explorations published. While experiments work on complicated materials, theoretical studies are still hovering around the phenomenon-bas