ترغب بنشر مسار تعليمي؟ اضغط هنا

Energy-gap modulation of boron nitride nanoribbons by transverse electric fields: First-principles calculations

108   0   0.0 ( 0 )
 نشر من قبل Zhuhua Zhang
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Systematic ab initio calculations show that the energy gap of boron nitride (BN) nanoribbons (BNNRs) with zigzag or armchair edges can be significantly reduced by a transverse electric field and completely closed at a critical field which decreases with increasing ribbon width. In addition, a distinct gap modulation in the ribbons with zigzag edges is presented when a reversed electric field is applied. In a weak field, the gap reduction of the BNNRs with zigzag edges originates from the field-induced energy level shifts of the spatially separated edge-states, while the gap reduction of the BNNRs with armchair edges arises from the Stark effect. As the field gets stronger, the energy gaps of both types of the BNNRs gradually close due to the field-induced motion of nearly free electron states. Without the applied fields, the energy gap modulation by varying ribbon width is rather limited.

قيم البحث

اقرأ أيضاً

We present results for the optical absorption spectra of small-diameter single-wall carbon and boron nitride nanotubes obtained by {it ab initio} calculations in the framework of time-dependent density functional theory. We compare the results with t hose obtained for the corresponding layered structures, i.e. the graphene and hexagonal BN sheets. In particular, we focus on the role of depolarization effects, anisotropies and interactions in the excited states. We show that already the random phase approximation reproduces well the main features of the spectra when crystal local field effects are correctly included, and discuss to which extent the calculations can be further simplified by extrapolating results obtained for the layered systems to results expected for the tubes. The present results are relevant for the interpretation of data obtained by recent experimental tools for nanotube characterization such as optical and fluorescence spectroscopies as well as polarized resonant Raman scattering spectroscopy. We also address electron energy loss spectra in the small-q momentum transfer limit. In this case, the interlayer and intertube interactions play an enhanced role with respect to optical spectroscopy.
A recent study associate carbon with single photon emitters (SPEs) in hexagonal boron nitride (h-BN). This observation, together with the high mobility of carbon in h-BN suggest the existence of SPEs based on carbon clusters. Here, by means of densit y-functional theory calculations we studied clusters of substitutional carbon atoms up to tetramers in hexagonal boron nitride. Two different conformations of neutral carbon trimers have zero-point line energies and shifts of the phonon sideband compatible with typical photoluminescence spectra. Moreover, some conformations of two small C clusters next to each other result in photoluminescence spectra similar to those found in experiments. We also showed that vacancies are unable to reproduce the typical features of the phonon sideband observed in most measurements due to the large spectral weight of low-energy breathing modes, ubiquitous in such defects.
First-principles calculations reveal half metallicity in zigzag boron nitride (BN) nanoribbons (ZBNNRs). When the B edge, but not the N edge, of the ZBNNR is passivated, despite being a pure $sp$-electron system, the ribbon shows a giant spin splitti ng. The electrons at the Fermi level are 100% spin polarized with a half-metal gap of 0.38 eV and its conductivity is dominated by metallic single-spin states. The two states across at the Dirac point have different molecular origins, which signals a switch of carrier velocity. The ZBNNR should be a good potential candidate for widegap spintronics.
We have given a summary on our theoretical predictions of three kinds of topological semimetals (TSMs), namely, Dirac semimetal (DSM), Weyl semimetal (WSM) and Node-Line Semimetal (NLSM). TSMs are new states of quantum matters, which are different wi th topological insulators. They are characterized by the topological stability of Fermi surface, whether it encloses band crossing point, i.e., Dirac cone like energy node, or not. They are distinguished from each other by the degeneracy and momentum space distribution of the nodal points. To realize these intriguing topological quantum states is quite challenging and crucial to both fundamental science and future application. In 2012 and 2013, Na$_3$Bi and Cd$_3$As$_2$ were theoretically predicted to be DSM, respectively. Their experimental verifications in 2014 have ignited the hot and intensive studies on TSMs. The following theoretical prediction of nonmagnetic WSM in TaAs family stimulated a second wave and many experimental works have come out in this year. In 2014, a kind of three dimensional crystal of carbon has been proposed to be NLSM due to negligible spin-orbit coupling and coexistence of time-reversal and inversion symmetry. Though the final experimental confirmation of NLSM is still missing, there have been several theoretical proposals, including Cu$_3$PdN from us. In the final part, we have summarized the whole family of TSMs and their relationship.
151 - Kangtai Sun , Zhibin Gao , 2021
Phonon Hall effect (PHE) has attracted a lot of attention in recent years with many theoretical and experimental explorations published. While experiments work on complicated materials, theoretical studies are still hovering around the phenomenon-bas ed models. Moreover, previous microscopic theory was found unable to explain large thermal Hall conductivity obtained by experiments in strontium titanate (STO). Therefore, as a first attempt to bridge this gap, we implement first-principles calculations to explore the PHE in real materials. Our work provides a new benchmark of the PHE in sodium chloride (NaCl) under a large external magnetic field. Moreover, we demonstrate our results in barium titanate (BTO), and discuss the results in STO in detail about their deviation from experiments. As a possible future direction, we further propose that the inner electronic Berry curvature plays an important role in the PHE in STO.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا