ﻻ يوجد ملخص باللغة العربية
To date, two types of coupling between electromagnetic radiation and a crystal lattice have been identified experimentally. One is direct, for infrared (IR)-active vibrations that carry an electric dipole. The second is indirect, it occurs through intermediate excitation of the electronic system via electron-phonon coupling, as in stimulated Raman scattering. Nearly 40 years ago, proposals were made of a third path, referred to as ionic Raman scattering (IRS). It was posited that excitation of an IR-active phonon could serve as the intermediate state for a Raman scattering process relying on lattice anharmonicity as opposed to electron phonon interaction. In this paper, we report an experimental demonstration of ionic Raman scattering and show that this mechanism is relevant to optical control in solids. The key insight is that a rectified phonon field can exert a directional force onto the crystal, inducing an abrupt displacement of the atoms from the equilibrium positions that could not be achieved through excitation of an IR-active vibration alone, for which the force is oscillatory. IRS opens up a new direction for the coherent control of solids in their electronic ground state, different from approaches that rely on electronic excitations.
Nonlinear interactions between phonon modes govern the behavior of vibrationally highly excited solids and molecules. Here, we demonstrate theoretically that optical cavities can be used to control the redistribution of energy from a highly excited c
Nonlinear phononics relies on the resonant optical excitation of infrared-active lattice vibrations to coherently induce targeted structural deformations in solids. This form of dynamical crystal-structure design has been applied to control the funct
Optical nonlinearities in solids reveal information about both the in-plane rotational and out-of-plane inversion symmetries of a crystal. In the van der Waals material hexagonal boron nitride (hBN) both these symmetries and the linear vibrational pr
A grand challenge underlies the entire field of topology-enabled quantum logic and information science: how to establish topological control principles driven by quantum coherence and understand the time-dependence of such periodic driving? Here we d
Using a combination of first-principles and magnetization-dynamics calculations, we study the effect of the intense optical excitation of phonons on the magnetic behavior in insulating magnetic materials. Taking the prototypical magnetoelectric CrO a