ﻻ يوجد ملخص باللغة العربية
We consider the 2D inviscid incompressible irrotational infinite depth water wave problem neglecting surface tension. Given wave packet initial data, we show that the modulation of the solution is a profile traveling at group velocity and governed by a focusing cubic nonlinear Schrodinger equation, with rigorous error estimates in Sobolev spaces. As a consequence, we establish existence of solutions of the water wave problem in Sobolev spaces for times in the NLS regime provided the initial data is suitably close to a wave packet of sufficiently small amplitude in Sobolev spaces.
We consider small amplitude wave packet-like solutions to the 3D inviscid incompressible irrotational infinite depth water wave problem neglecting surface tension. Formal multiscale calculations suggest that the modulation of such a solution is descr
We consider the long time well-posedness of the Cauchy problem with large Sobolev data for a class of nonlinear Schrodinger equations (NLS) on $mathbb{R}^2$ with power nonlinearities of arbitrary odd degree. Specifically, the method in this paper app
Consider the anisotropic Navier-Stokes equations as well as the primitive equations. It is shown that the horizontal velocity of the solution to the anisotropic Navier-Stokes equations in a cylindrical domain of height $varepsilon $ with initial data
In this paper we prove that weak solutions to the Diffusive Wave Approximation of the Shallow Water equations $$ partial_t u - ablacdot ((u-z)^alpha| abla u|^{gamma-1} abla u) = f $$ are locally bounded. Here, $u$ describes the height of the water,
The well-known Stokes waves refer to periodic traveling waves under the gravity at the free surface of a two dimensional full water wave system. In this paper, we prove that small-amplitude Stokes waves with infinite depth are nonlinearly unstable un