ﻻ يوجد ملخص باللغة العربية
We consider small amplitude wave packet-like solutions to the 3D inviscid incompressible irrotational infinite depth water wave problem neglecting surface tension. Formal multiscale calculations suggest that the modulation of such a solution is described by a profile traveling at group velocity and governed by a hyperbolic cubic nonlinear Schrodinger equation. In this paper we show that, given wave packet initial data, the corresponding solution exists and retains the form of a wave packet on natural NLS time scales. Moreover, we give rigorous error estimates between the true and formal solutions on the appropriate time scale in Sobolev spaces using the energy method. The proof proceeds by directly applying modulational analysis to the formulation of the 3D water wave problem developed by Sijue Wu.
We consider the 2D inviscid incompressible irrotational infinite depth water wave problem neglecting surface tension. Given wave packet initial data, we show that the modulation of the solution is a profile traveling at group velocity and governed by
In this paper we prove that weak solutions to the Diffusive Wave Approximation of the Shallow Water equations $$ partial_t u - ablacdot ((u-z)^alpha| abla u|^{gamma-1} abla u) = f $$ are locally bounded. Here, $u$ describes the height of the water,
Consider the anisotropic Navier-Stokes equations as well as the primitive equations. It is shown that the horizontal velocity of the solution to the anisotropic Navier-Stokes equations in a cylindrical domain of height $varepsilon $ with initial data
The primitive equations are fundamental models in geophysical fluid dynamics and derived from the scaled Navier-Stokes equations. In the primitive equations, the evolution equation to the vertical velocity is replaced by the so-called hydrostatic app
Uniqueness and reconstruction in the three-dimensional Calderon inverse conductivity problem can be reduced to the study of the inverse boundary problem for Schrodinger operators $-Delta +q $. We study the Born approximation of $q$ in the ball, which