ﻻ يوجد ملخص باللغة العربية
We examine general physical parameterisations for viable gravitational models in the $f(R)$ framework. This is related to the mass of an additional scalar field, called the scalaron, that is introduced by the theories. Using a simple parameterisation for the scalaron mass $M(a)$ we show there is an exact correspondence between the model and popular parameterisations of the modified Poisson equation $mu(a,k)$ and the ratio of the Newtonian potentials $eta(a,k)$. However, by comparing the aforementioned model against other viable scalaron theories we highlight that the common form of $mu(a,k)$ and $eta(a,k)$ in the literature does not accurately represent $f(R)$ behaviour. We subsequently construct an improved description for the scalaron mass (and therefore $mu(a,k)$ and $eta(a,k)$) which captures their essential features and has benefits derived from a more physical origin. We study the scalarons observational signatures and show the modification to the background Friedmann equation and CMB power spectrum to be small. We also investigate its effects in the linear and non linear matter power spectrum--where the signatures are evident--thus giving particular importance to weak lensing as a probe of these models. Using this new form, we demonstrate how the next generation Euclid survey will constrain these theories and its complementarity to current solar system tests. In the most optimistic case Euclid, together with a Planck prior, can constrain a fiducial scalaron mass $M_{0} = 9.4 times 10^{-30}{rm eV}$ at the $sim 20 %$ level. However, the decay rate of the scalaron mass, with fiducial value $ u = 1.5$, can be constrained to $sim 3%$ uncertainty.
Cosmological structures grow differently in theories of gravity which are modified as compared to Einsteins General relativity (GR). Cosmic microwave background (CMB) fluctuation patterns at the last scattering surface are lensed by these structures
We present a novel suite of cosmological N-body simulations called the DUSTGRAIN-pathfinder, implementing simultaneously the effects of an extension to General Relativity in the form of $f(R)$ gravity and of a non-negligible fraction of massive neutr
In recent years, weak lensing of the cosmic microwave background (CMB) has emerged as a powerful tool to probe fundamental physics, such as neutrino masses, primordial non-Gaussianity, dark energy, and modified gravity. The prime target of CMB lensin
We impose the first strong-lensing constraints on a wide class of modified gravity models where an extra field that modifies gravity also couples to photons (either directly or indirectly through a coupling with baryons) and thus modifies lensing. We
Recent studies have demonstrated that {em secondary} non-Gaussianity induced by gravity will be detected with a high signal-to-noise (S/N) by future and even by on-going weak lensing surveys. One way to characterise such non-Gaussianity is through th