ﻻ يوجد ملخص باللغة العربية
Recent studies have demonstrated that {em secondary} non-Gaussianity induced by gravity will be detected with a high signal-to-noise (S/N) by future and even by on-going weak lensing surveys. One way to characterise such non-Gaussianity is through the detection of a non-zero three-point correlation function of the lensing convergence field, or of its harmonic transform, the bispectrum. A recent study analysed the properties of the squeezed configuration of the bispectrum, when two wavenumbers are much larger than the third one. We extend this work by estimating the amplitude of the (reduced) bispectrum in four generic configurations, i.e., {em squeezed, equilateral, isosceles} and {em folded}, and for four different source redshifts $z_s=0.5,1.0,1.5,2.0$, by using an ensemble of all-sky high-resolution simulations. We compare these results against theoretical predictions. We find that, while the theoretical expectations based on widely used fitting functions can predict the general trends of the reduced bispectra, a more accurate theoretical modelling will be required to analyse the next generation of all-sky weak lensing surveys. The disagreement is particularly pronounced in the squeezed limit.
Intensity maps of the 21cm emission line of neutral hydrogen are lensed by intervening large-scale structure, similar to the lensing of the cosmic microwave background temperature map. We extend previous work by calculating the lensing contribution t
We study the effect of weak lensing by cosmic (super-)strings on the higher-order statistics of the cosmic microwave background (CMB). A cosmic string segment is expected to cause weak lensing as well as an integrated Sachs-Wolfe (ISW) effect, the so
Dark energy may be the first sign of new fundamental physics in the Universe, taking either a physical form or revealing a correction to Einsteinian gravity. Weak gravitational lensing and galaxy peculiar velocities provide complementary probes of Ge
We extend the theory of weak gravitational lensing to cosmologies with generalized gravity, described in the Lagrangian by a generic function depending on the Ricci scalar and a non-minimal coupled scalar field. We work out the generalized Poisson eq
We explore the effect of massive neutrinos on the weak lensing shear bispectrum using the Cosmological Massive Neutrino Simulations. We find that the primary effect of massive neutrinos is to suppress the amplitude of the bispectrum with limited effe