ترغب بنشر مسار تعليمي؟ اضغط هنا

Nuclear structure and reaction studies at SPIRAL

139   0   0.0 ( 0 )
 نشر من قبل Olivier Sorlin
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English
 تأليف A. Navin




اسأل ChatGPT حول البحث

The SPIRAL facility at GANIL, operational since 2001, is described briefly. The diverse physics program using the re-accelerated (1.2 to 25 MeV/u) beams ranging from He to Kr and the instrumentation specially developed for their exploitation are presented. Results of these studies, using both direct and compound processes, addressing various questions related to the existence of exotic states of nuclear matter, evolution of new magic numbers, tunnelling of exotic nuclei, neutron correlations, exotic pathways in astrophysical sites and characterization of the continuum are discussed. The future prospects for the facility and the path towards SPIRAL2, a next generation ISOL facility, are also briefly presented.



قيم البحث

اقرأ أيضاً

403 - L. Caceres 2015
The structure of the $^{24}$F nucleus has been studied at GANIL using the $beta$ decay of $^{24}$O and the in-beam $gamma$-ray spectroscopy from the fragmentation of projectile nuclei. Combining these complementary experimental techniques, the level scheme of $^{24}$F has been constructed up to 3.6 Mev by means of particle-$gamma$ and particle-$gammagamma$ coincidence relations. Experimental results are compared to shell-model calculations using the standard USDA and USDB interactions as well as ab-initio valence-space Hamiltonians calculated from the in-medium similarity renormalization group based on chiral two- and three-nucleon forces. Both methods reproduce the measured level spacings well, and this close agreement allows unidentified spins and parities to be consistently assigned.
104 - Peter Senger 2020
Laboratory experiments with high-energetic heavy-ion collisions offer the opportunity to explore fundamental properties of nuclear matter, such as the high-density equation-of-state, which governs the structure and dynamics of cosmic objects and phen omena like neutron stars, supernova explosions, and neutron star mergers. A particular goal and challenge of the experiments is to unravel the microscopic degrees-of-freedom of strongly interaction matter at high density, including the search for phase transitions, which may feature a region of phase coexistence and a critical endpoint. As the theory of strong interaction is not able to make firm predictions for the structure and the properties of matter high baryon chemical potentials, the scientific progress in this field is driven by experimental results. The mission of future experiments at FAIR and NICA, which will complement the running experimental programs at GSI, CERN, and RHIC, is to explore new diagnostic probes, which never have been measured before at collision energies, where the highest net-baryon densities will be created. The most promising observables, which are expected to shed light on the nature of high-density QCD matter, comprise the collective flow of identified particles including multi-strange (anti-) hyperons, fluctuations and correlations, lepton pairs, and charmed particles. In the following, the perspectives for experiments in the NICA energy range will be discussed.
190 - O. Sorlin 2017
It is proposed here to investigate three major properties of the nuclear force that influence the amplitude of shell gaps, the nuclear binding energies as well as the nuclear $beta$-decay properties far from stability, that are all key ingredients fo r modeling the r-process nucleosynthesis. These properties are derived from experiments performed in different facilities worldwide, using several various state-of-the-art experimental techniques including transfer and knockout reactions. Expected consequences on the r process nucleosynthesis as well as on the stability of super heavy elements are discussed.
Excitation energy spectra and absolute cross section angular distributions were measured for the 13C(18O,16O)15C two-neutron transfer reaction at 84 MeV incident energy. This reaction selectively populates two-neutron configurations in the states of the residual nucleus. Exact finite-range coupled reaction channel calculations are used to analyse the data. Two approaches are discussed: the extreme cluster and the newly introduced microscopic cluster. The latter makes use of spectroscopic amplitudes in the centre of mass reference frame, derived from shell-model calculations using the Moshinsky transformation brackets. The results describe well the experimental cross section and highlight cluster configurations in the involved wave functions.
We present recent results in theoretical studies on nuclear structure and reaction beyond mean field, using the adiabatic self-consistent collective coordinate method and its extension. We also present new results with the finite-temperature Hartree- Fock-Bogoliubov calculation with the three-dimensional-coordinate-space representation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا