ﻻ يوجد ملخص باللغة العربية
It has been suggested that coronal mass ejections (CMEs) remove the magnetic helicity of their coronal source region from the Sun. Such removal is often regarded to be necessary due to the hemispheric sign preference of the helicity, which inhibits a simple annihilation by reconnection between volumes of opposite chirality. Here we monitor the relative magnetic helicity contained in the coronal volume of a simulated flux rope CME, as well as the upward flux of relative helicity through horizontal planes in the simulation box. The unstable and erupting flux rope carries away only a minor part of the initial relative helicity; the major part remains in the volume. This is a consequence of the requirement that the current through an expanding loop must decrease if the magnetic energy of the configuration is to decrease as the loop rises, to provide the kinetic energy of the CME.
In-situ measurements carried out by spacecraft in radial alignment are critical to advance our knowledge on the evolutionary behavior of coronal mass ejections (CMEs) and their magnetic structures during propagation through interplanetary space. Yet,
Jets are defined as impulsive, well-collimated upflows, occurring in different layers of the solar atmosphere with different scales. Their relationship with coronal mass ejections (CMEs), another type of solar impulsive events, remains elusive. Using
We compare the magnetic helicity in the 17-18 March 2013 interplanetary coronal mass ejection (ICME) flux-rope at 1 AU and in its solar counterpart. The progenitor coronal mass ejection (CME) erupted on 15 March 2013 from NOAA active region 11692 and
Interest in stealth coronal mass ejections (CMEs) is increasing due to their relatively high occurrence rate and space weather impact. However, typical CME signatures such as extreme-ultraviolet dimmings and post-eruptive arcades are hard to identify
From the GOES-12/SXI data, we studied the initial stage of motion for six rapid (over 1500 km/s) halo coronal mass ejections (HCMEs) and traced the motion of these HCMEs within the SOHO/LASCO C2 and C3 field-of-view. For these HCMEs the time-dependen