ترغب بنشر مسار تعليمي؟ اضغط هنا

Helicity transport in a simulated coronal mass ejection

119   0   0.0 ( 0 )
 نشر من قبل Bernhard Kliem
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It has been suggested that coronal mass ejections (CMEs) remove the magnetic helicity of their coronal source region from the Sun. Such removal is often regarded to be necessary due to the hemispheric sign preference of the helicity, which inhibits a simple annihilation by reconnection between volumes of opposite chirality. Here we monitor the relative magnetic helicity contained in the coronal volume of a simulated flux rope CME, as well as the upward flux of relative helicity through horizontal planes in the simulation box. The unstable and erupting flux rope carries away only a minor part of the initial relative helicity; the major part remains in the volume. This is a consequence of the requirement that the current through an expanding loop must decrease if the magnetic energy of the configuration is to decrease as the loop rises, to provide the kinetic energy of the CME.

قيم البحث

اقرأ أيضاً

In-situ measurements carried out by spacecraft in radial alignment are critical to advance our knowledge on the evolutionary behavior of coronal mass ejections (CMEs) and their magnetic structures during propagation through interplanetary space. Yet, the scarcity of radially aligned CME crossings restricts investigations on the evolution of CME magnetic structures to a few case studies, preventing a comprehensive understanding of CME complexity changes during propagation. In this paper, we perform numerical simulations of CMEs interacting with different solar wind streams using the linear force-free spheromak CME model incorporated into the EUropean Heliospheric FORecasting Information Asset (EUHFORIA) model. The novelty of our approach lies in the investigation of the evolution of CME complexity using a swarm of radially aligned, simulated spacecraft. Our scope is to determine under which conditions, and to what extent, CMEs exhibit variations of their magnetic structure and complexity during propagation, as measured by spacecraft that are radially aligned. Results indicate that the interaction with large-scale solar wind structures, and particularly with stream interaction regions, doubles the probability to detect an increase of the CME magnetic complexity between two spacecraft in radial alignment, compared to cases without such interactions. This work represents the first attempt to quantify the probability of detecting complexity changes in CME magnetic structures by spacecraft in radial alignment using numerical simulations, and it provides support to the interpretation of multi-point CME observations involving past, current (such as Parker Solar Probe and Solar Orbiter), and future missions.
Jets are defined as impulsive, well-collimated upflows, occurring in different layers of the solar atmosphere with different scales. Their relationship with coronal mass ejections (CMEs), another type of solar impulsive events, remains elusive. Using the high-quality imaging data of AIA/SDO, here we show a well-observed coronal jet event, in which part of the jets, with the embedding coronal loops, runs into a nearby coronal hole (CH) and gets bounced towards the opposite direction. This is evidenced by the flat-shape of the jet front during its interaction with the CH and the V-shaped feature in the time-slice plot of the interaction region. About a half-hour later, a CME initially with a narrow and jet-like front is observed by the LASCO C2 coronagraph, propagating along the direction of the post-collision jet. We also observe some 304 A dark material flowing from the jet-CH interaction region towards the CME. We thus suggest that the jet and the CME are physically connected, with the jet-CH collision and the large- scale magnetic topology of the CH being important to define the eventual propagating direction of this particular jet-CME eruption.
We compare the magnetic helicity in the 17-18 March 2013 interplanetary coronal mass ejection (ICME) flux-rope at 1 AU and in its solar counterpart. The progenitor coronal mass ejection (CME) erupted on 15 March 2013 from NOAA active region 11692 and associated with an M1.1 flare. We derive the source region reconnection flux using post-eruption arcade (PEA) method (Gopalswamy et al. 2017a) that uses the photospheric magnetogram and the area under the PEA. The geometrical properties of the near-Sun flux rope is obtained by forward-modeling of white-light CME observations. Combining the geometrical properties and the reconnection flux we extract the magnetic properties of the CME flux rope (Gopalswamy et al. 2017b). We derive the magnetic helicity of the flux rope using its magnetic and geometric properties obtained near the Sun and at 1 AU. We use a constant-{alpha} force-free cylindrical flux rope model fit to the in situ observations in order to derive the magnetic and geometric information of the 1-AU ICME. We find a good correspondence in both amplitude and sign of the helicity between the ICME and the CME assuming a semi-circular (half torus) ICME flux rope with a length of {pi} AU. We find that about 83% of the total flux rope helicity at 1 AU is injected by the magnetic reconnection in the low corona. We discuss the effect of assuming flux rope length in the derived value of the magnetic helicity. This study connecting the helicity of magnetic flux ropes through the Sun-Earth system has important implications for the origin of helicity in the interplanetary medium and the topology of ICME flux ropes at 1 AU and hence their space weather consequences.
Interest in stealth coronal mass ejections (CMEs) is increasing due to their relatively high occurrence rate and space weather impact. However, typical CME signatures such as extreme-ultraviolet dimmings and post-eruptive arcades are hard to identify and require extensive image processing techniques. These weak observational signatures mean that little is currently understood about the physics of these events. We present an extensive study of the magnetic field configuration in which the stealth CME of 3 March 2011 occurred. Three distinct episodes of flare ribbon formation are observed in the stealth CME source active region (AR). Two occurred prior to the eruption and suggest the occurrence of magnetic reconnection that builds the structure which will become eruptive. The third occurs in a time close to the eruption of a cavity that is observed in STEREO-B 171A data; this subsequently becomes part of the propagating CME observed in coronagraph data. We use both local (Cartesian) and global (spherical) models of the coronal magnetic field, which are complemented and verified by the observational analysis. We find evidence of a coronal null point, with field lines computed from its neighbourhood connecting the stealth CME source region to two ARs in the northern hemisphere. We conclude that reconnection at the null point aids the eruption of the stealth CME by removing field that acted to stabilise the pre-eruptive structure. This stealth CME, despite its weak signatures, has the main characteristics of other CMEs, and its eruption is driven by similar mechanisms.
From the GOES-12/SXI data, we studied the initial stage of motion for six rapid (over 1500 km/s) halo coronal mass ejections (HCMEs) and traced the motion of these HCMEs within the SOHO/LASCO C2 and C3 field-of-view. For these HCMEs the time-dependen t location, velocity and acceleration of their fronts were revealed. The conclusion was drawn that two types of CME exist depending on their velocity time profile. This profile depends on the properties of the active region where the ejection emerged. CMEs with equal ejection velocity time dependence originate form in the same active region. All the HCMEs studied represent loop-like structures either from the first moment of recording or a few minutes later. All the HCMEs under consideration start their translational motion prior to the associated X-ray flare onset. The main acceleration time (time to reach the highest velocity within the LASCO/C2 field-of-view) is close to the associated flare X-ray radiation intensity rise time. The results of (Zhang and Dere, 2006) on the existence of an inverse correlation between the acceleration amplitude and duration, and also on the equality of the measured HCME main acceleration duration and the associated flare soft X-ray intensity rise time are validated. We established some regularities in the temporal variation of the angular size, trajectory, front width and the HCME longitude-to-cross size ratio.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا