ترغب بنشر مسار تعليمي؟ اضغط هنا

The filling factor of intergalactic metals at redshift z=3

100   0   0.0 ( 0 )
 نشر من قبل Craig Booth
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف C. M. Booth




اسأل ChatGPT حول البحث

Observations of quasar absorption line systems reveal that the z=3 intergalactic medium (IGM) is polluted by heavy elements down to HI optical depths tau_HI<<10. What is not yet clear, however, is what fraction of the volume needs to be enriched by metals and whether it suffices to enrich only regions close to galaxies in order to reproduce the observations. We use gas density fields derived from large cosmological simulations, together with synthetic quasar spectra and imposed, model metal distributions to investigate what enrichment patterns can reproduce the observed median optical depth of CIV as a function of tau_HI. Our models can only satisfy the observational constraints if the z=3 IGM was primarily enriched by galaxies that reside in low-mass (m_tot<10^10 M_sun) haloes that can eject metals out to distances >10^2 kpc. Galaxies in more massive haloes cannot possibly account for the observations as they are too rare for their outflows to cover a sufficiently large fraction of the volume. Galaxies need to enrich gas out to distances that are much greater than the virial radii of their host haloes. Assuming the metals to be well mixed on small scales, our modeling requires that the fractions of the simulated volume and baryonic mass that are polluted with metals are, respectively, >10% and >50% in order to match observations.

قيم البحث

اقرأ أيضاً

We analyze the sources of free electrons that produce the large dispersion measures, DM $approx 300-1600$ (in units cm$^{-3}$ pc), observed toward fast radio bursts (FRBs). Individual galaxies typically produce DM $sim 25-60$ cm$^{-3}$ pc from ionize d gas in their disk, disk-halo interface, and circumgalactic medium. Toward an FRB source at redshift $z$, a homogeneous IGM containing a fraction $f_{rm IGM}$ of cosmological baryons will produce DM $= (935~{rm cm}^{-3}~{rm pc}) f_{rm IGM} , h_{70}^{-1} I(z)$, where $I(z) = (2/3 Omega_m)[ { Omega_m(1+z)^3 + Omega_{Lambda} }^{1/2} - 1 ]$. A structured IGM of photoionized Ly-alpha absorbers in the cosmic web produces similar dispersion, modeled from the observed distribution, $f_b(N,z)$, of H I (Lya-forest) absorbers in column density and redshift with ionization corrections and scaling relations from cosmological simulations. An analytic formula for DM($z$) applied to observed FRB dispersions suggests that $z_{rm FRB} approx 0.2-1.5$ for an IGM containing a significant baryon fraction, $f_{rm IGM} = 0.6pm0.1$. Future surveys of the statistical distribution, DM($z)$, of FRBs identified with specific galaxies and redshifts, can be used to calibrate the IGM baryon fraction and distribution of Ly-alpha absorbers. Fluctuations in DM at the level $pm10$ cm$^{-3}$ pc will arise from filaments and voids in the cosmic web.
Using a mass-selected ($M_{star} ge 10^{11} M_{odot}$) sample of 198 galaxies at 0 < z < 3.0 with HST/NICMOS $H_{160}$-band images from the COSMOS survey, we find evidence for the evolution of the pair fraction above z ~ 2, an epoch in which massive galaxies are believed to undergo significant structural and mass evolution. We observe that the pair fraction of massive galaxies is 0.15 pm 0.08 at 1.7 < z < 3.0, where galaxy pairs are defined as massive galaxies having a companion of flux ratio from 1:1 to 1:4 within a projected separation of 30 kpc. This is slightly lower, but still consistent with the pair fraction measured previously in other studies, and the merger fraction predicted in halo-occupation modelling. The redshift evolution of the pair fraction is described by a power law F(z) = (0.07 pm 0.04) * (1+z) ^ (0.6 pm 0.5). The merger rate is consistent with no redshift evolution, however it is difficult to constrain due to the limited sample size and the high uncertainties in the merging timescale. Based on the merger rate calculation, we estimate that a massive galaxy undergoes on average 1.1 pm 0.5 major merger from z = 3 to 0. The observed merger fraction is sufficient to explain the number density evolution of massive galaxies, but insufficient to explain the size evolution. This is a hint that mechanism(s) other than major merging may be required to increase the sizes of the massive, compact quiescent galaxies from z ~ 2 to 0.
96 - C. T. Pratt 2017
We investigate the association between galaxies and metal-enriched and metal-deficient absorbers in the local universe ($z < 0.16$) using a large compilation of FUV spectra of bright AGN targets observed with the Cosmic Origins Spectrograph aboard th e Hubble Space Telescope. In this homogeneous sample of 18 O VI detections at $N_{rm O,{VI}}geq13.5~mathrm{cm}^{-2}$ and 18 non-detections at $N_{rm O,{VI}}<13.5~mathrm{cm}^{-2}$ using Lya absorbers with ${N_{rm H,{I}}geq} 10^{14}~mathrm{cm}^{-2}$, the maximum distance O VI extends from galaxies of various luminosities is $sim0.6$ Mpc, or $sim5$ virial radii, confirming and refining earlier results. This is an important value that must be matched by numerical simulations, which input the strength of galactic winds at the sub-grid level. We present evidence that the primary contributors to the spread of metals into the circum- and intergalactic media are sub-$L^*$ galaxies ($0.25L^*<L<L^*$). The maximum distances that metals are transported from these galaxies is comparable to, or less than, the size of a group of galaxies. These results suggest that, where groups are present, the metals produced by the group galaxies do not leave the group. Since many O VI non-detections in our sample occur at comparably close impact parameters as the metal-bearing absorbers, some more pristine intergalactic material appears to be accreting onto groups where it can mix with metal-bearing clouds.
We analyze intergalactic HI and OVI absorbers with v<5000 km/s in HST and FUSE spectra of 76 AGNs. The baryons traced by HI/OVI absorption are clearly associated with the extended surroundings of galaxies; for impact parameters <400 kpc they are ~5 t imes more numerous as those inside the galaxies. This large reservoir of matter likely plays a major role in galaxy evolution. We tabulate the fraction of absorbers having a galaxy of a given luminosity within a given impact parameter (rho) and velocity difference (Dv), as well as the fraction of galaxies with an absorber closer than a given rho and Dv. We identify possible void absorbers (rho>3 Mpc to the nearest L* galaxy), although at v<2500 km/s all absorbers are within 1.5 Mpc of an L>0.1 L* galaxy. The absorber properties depend on rho, but the relations are not simple correlations. For four absorbers with rho=50-350 kpc from an edge-on galaxy with known orientation of its rotation, we find no clear relation between absorber velocities and the rotation curve of the underlying galaxy. For rho<350 kpc the covering factor of Ly-alpha (OVI) around L>0.1 L* galaxies is 100% for field galaxies and 65% for group galaxies; 50% of galaxy groups have associated Ly-alpha. All OVI absorbers occur within 550 kpc of an L>0.25 L* galaxy. The properties of three of 14 OVI absorbers are consistent with photoionization, for five the evidence points to collisional ionization; the others are ambiguous. The fraction of broad Ly-alpha lines increases from z=3 to z=0 and with decreasing impact parameter, consistent with the idea that gas inside ~500 kpc from galaxies is heating up, although alternative explanations can not be clearly excluded.
We compare a sample of five high-resolution, high S/N Ly$alpha$ forest spectra of bright $6<z lesssim 6.5$ QSOs aimed at spectrally resolving the last remaining transmission spikes at $z>5$ with those obtained from mock absorption spectra from the Sh erwood and Sherwood-Relics suites of hydrodynamical simulations of the intergalactic medium (IGM). We use a profile fitting procedure for the inverted transmitted flux, $1-F$, similar to the widely used Voigt profile fitting of the transmitted flux $F$ at lower redshifts, to characterise the transmission spikes that probe predominately underdense regions of the IGM. We are able to reproduce the width and height distributions of the transmission spikes, both with optically thin simulations of the post-reionization Universe using a homogeneous UV background and full radiative transfer simulations of a late reionization model. We find that the width of the fitted components of the simulated transmission spikes is very sensitive to the instantaneous temperature of the reionized IGM. The internal structures of the spikes are more prominant in low temeperature models of the IGM. The width distribution of the observed transmission spikes, which require high spectral resolution ($leq $ 8 km/s) to be resolved, is reproduced for optically thin simulations with a temperature at mean density of $T_0= (11000 pm 1600,10500pm 2100,12000 pm 2200)$ K at $z= (5.4,5.6,5.8)$. This is weakly dependent on the slope of the temperature-density relation, which is favoured to be moderately steeper than isothermal. In the inhomogeneous, late reionization, full radiative transfer simulations where islands of neutral hydrogen persist to $zsim5.3$, the width distribution of the observed transmission spikes is consistent with the range of $T_0$ caused by spatial fluctuations in the temperature-density relation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا