ﻻ يوجد ملخص باللغة العربية
We show how multi-level BCS Hamiltonians of finite systems in the strong pairing interaction regime can be accurately approximated using multi-dimensional shifted harmonic oscillator Hamiltonians. In the Shifted Harmonic Approximation (SHA), discrete quantum state variables are approximated as continuous ones and algebraic Hamiltonians are replaced by differential operators. Using the SHA, the results of the BCS theory, such as the gap equations, can be easily derived without the BCS approximation. In addition, the SHA preserves the symmetries associated with the BCS Hamiltonians. Lastly, for all interaction strengths, the SHA can be used to identify the most important basis states -- allowing accurate computation of low-lying eigenstates by diagonalizing BCS Hamiltonians in small subspaces of what may otherwise be vastly larger Hilbert spaces.
Topological pairing of composite fermions has led to remarkable ideas, such as excitations obeying non-Abelian braid statistics and topological quantum computation. We construct a $p$-wave paired Bardeen-Cooper-Schrieffer (BCS) wave function for comp
We propose the $ThetaPhi$ (Theta-Phi) package which addresses two of the most important extensions of the essentially single-particle mean-field paradigm of the computational solid state physics: the admission of the Bardeen-Cooper-Schrieffer electro
Starting from H. Frohlichs second-quantized Hamiltonian for a $d$-dimensional electron gas in interaction with lattice phonons describing the quantum vibrations of a metal, we present a rigorous mathematical derivation of the superconducting state, f
We determine the exact dynamics of an initial Bardeen-Cooper-Schrieffer (BCS) state of ultra-cold atoms in a deep hexagonal optical lattice. The dynamical evolution is triggered by a quench of the lattice potential, such that the interaction strength
Bardeen-Cooper-Schrieffer (BCS) theory describes a superconducting transition as a single critical point where the gap function or, equivalently, the order parameter vanishes uniformly in the entire system. We demonstrate that in superconductors desc