ﻻ يوجد ملخص باللغة العربية
Bardeen-Cooper-Schrieffer (BCS) theory describes a superconducting transition as a single critical point where the gap function or, equivalently, the order parameter vanishes uniformly in the entire system. We demonstrate that in superconductors described by standard BCS models, the superconducting gap survives near the sample boundaries at higher temperatures than superconductivity in the bulk. Therefore, conventional superconductors have multiple critical points associated with separate phase transitions at the boundary and in the bulk. We show this by revising the Caroli-De Gennes-Matricon theory of a superconductor-vacuum boundary and finding inhomogeneous solutions of the BCS gap equation near the boundary, which asymptotically decay in the bulk. This is demonstrated for a BCS model of almost free fermions and for lattice fermions in a tight-binding approximation. The analytical results are confirmed by numerical solutions of the microscopic model. The existence of these boundary states can manifest itself as discrepancies between the critical temperatures observed in calorimetry and transport probes.
We propose the $ThetaPhi$ (Theta-Phi) package which addresses two of the most important extensions of the essentially single-particle mean-field paradigm of the computational solid state physics: the admission of the Bardeen-Cooper-Schrieffer electro
Topological pairing of composite fermions has led to remarkable ideas, such as excitations obeying non-Abelian braid statistics and topological quantum computation. We construct a $p$-wave paired Bardeen-Cooper-Schrieffer (BCS) wave function for comp
We determine the exact dynamics of an initial Bardeen-Cooper-Schrieffer (BCS) state of ultra-cold atoms in a deep hexagonal optical lattice. The dynamical evolution is triggered by a quench of the lattice potential, such that the interaction strength
Starting from H. Frohlichs second-quantized Hamiltonian for a $d$-dimensional electron gas in interaction with lattice phonons describing the quantum vibrations of a metal, we present a rigorous mathematical derivation of the superconducting state, f
Shortly after the Gorkovs microscopic derivation of Ginzburg-Landau model via a small order parameter expansion in BCS theory, the derivation was carried to next-to-leading order in that parameter and its spatial derivatives. The aim was to obtain a