ﻻ يوجد ملخص باللغة العربية
Non-Markovian effects are important in modeling the behavior of open quantum systems arising in solid-state physics, quantum optics as well as in study of biological and chemical systems. A common approach to the analysis of such systems is to approximate the non-Markovian environment by discrete bosonic modes thus mapping it to a Lindbladian or Hamiltonian simulation problem. While systematic constructions of such modes have been proposed in previous works [D. Tamascelli et al, PRL (2012), A. W. Chin et al, J. of Math. Phys (2010)], the resulting approximation lacks rigorous convergence guarantees. In this paper, we initiate a rigorous study of the convergence properties of these methods. We show that under some physically motivated assumptions on the system-environment interaction, the finite-time dynamics of the non-Markovian open quantum system computed with a sufficiently large number of modes is guaranteed to converge to the true result. Furthermore, we show that, for most physically interesting models of non-Markovian environments, the approximation error falls off polynomially with the number of modes. Our results lend rigor to numerical methods used for approximating non-Markovian quantum dynamics and allow for a quantitative assessment of classical as well as quantum algorithms in simulating non-Markovian quantum systems.
It is known that one can characterize the decoherence strength of a Markovian environment by the product of its temperature and induced damping, and order the decoherence strength of multiple environments by this quantity. We show that for non-Markov
The dynamics of two interacting spins coupled to separate bosonic baths is studied. An analytical solution in Born approximation for arbitrary spectral density functions of the bosonic environments is found. It is shown that in the non-Markovian case
We consider two qubits interacting with a common bosonic bath, but not directly between themselves. We derive the (bipartite) entanglement generation conditions for Gaussian non-Markovian dynamical maps and show that they are similar as in the Markov
The force estimation problem in quantum metrology with an arbitrary non-Markovian Gaussian bath is considered. No assumptions are made on the bath spectrum and coupling strength with the probe. Considering the natural global unitary evolution of both
We study the effect of an ancillary system on the quantum speed limit time in different non-Markovian environments. Through employing an ancillary system coupled with the quantum system of interest via hopping interaction and investigating the cases