ﻻ يوجد ملخص باللغة العربية
We study nuclear symmetry energy of dense matter using holographic QCD. We calculate it in a various holographic QCD models and show that the scaling index of the symmetry energy in dense medium is almost invariant under the smooth deformation of the metric as well as the embedding shape of the probe brane. We find that the scaling index depends only on the dimensionality of the branes and space-time. Therefore the scaling index of the symmetry energy characterizes the universality classes of holographic QCD models. We suggest that the scaling index might be also related to the non-fermi liquid behavior of the interacting nucleons.
We study the nuclear symmetry energy of dense matter using holographic QCD. To this end, we consider two flavor branes with equal quark masses in a D4/D6/D6 model. We find that at all densities the symmetry energy monotonically increases. At small de
We construct the D4/D8 brane configuration in the Witten-Sakai-Sugimoto model by introducing a pair of heavy flavour brane with a heavy-light open string. The multiplets created by the heavy-light string acquire mass due to the finite separation of t
We consider the noncommutative deformation of the Sakai--Sugimoto model at finite temperature and finite baryon chemical potential. The space noncommutativity is possible to have an influence on the flavor dynamics of the QCD. The critical temperatur
We introduce a notion of universality classes for the Gregory-Laflamme instability and determine, in the supergravity approximation, the stability of a variety of solutions, including the non-extremal D3-brane, M2-brane, and M5-brane. These three non
We consider the holographic QCD model with a planar horizon in the D dimensions with different consistent metric solutions. We investigate the black hole thermodynamics, phase diagram and equations of state (EoS) in different dimensions. The temperat