ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-quark hadrons from Heavy Ion Collisions

132   0   0.0 ( 0 )
 نشر من قبل Su Houng Lee
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Identifying hadronic molecular states and/or hadrons with multi-quark components either with or without exotic quantum numbers is a long standing challenge in hadronic physics. We suggest that studying the production of these hadrons in relativistic heavy ion collisions offer a promising resolution to this problem as yields of exotic hadrons are expected to be strongly affected by their structures. Using the coalescence model for hadron production, we find that compared to the case of a non-exotic hadron with normal quark numbers, the yield of an exotic hadron is typically an order of magnitude smaller when it is a compact multi-quark state and a factor of two or more larger when it is a loosely bound hadronic molecule. We further find that due to the appreciable numbers of charm and bottom quarks produced in heavy ion collisions at RHIC and even larger numbers expected at LHC, some of the newly proposed heavy exotic states could be produced and realistically measured in these experiments.



قيم البحث

اقرأ أيضاً

Heavy ion collisions (HIC) at high energies are excellent ways for producing heavy hadrons and composite particles. With upgraded detectors at RHIC and LHC, it has become possible to measure hadrons beyond their ground states. Therefore, HIC provide a new method for studying exotic hadrons that are either hadronic molecular states or compact multiquark systems. Because their structures are related to the fundamental properties of QCD, studying exotic hadrons is currently one of the most active areas of research in hadron physics. Experiments carried out at various accelerator facilities have indicated that some exotic hadrons may have already been produced. The present review is a summary of the current understanding of a selected set of exotic particle candidates that can be potentially measured in HIC. It also includes discussions on the production of exotic hadrons in HIC based on the coalescence and statistical models. A more detailed discussion leads to the conclusion that the yield of a hadron is typically an order of magnitude smaller when it is a compact multiquark state than that of an excited hadronic state with normal quark numbers and/or a molecular configuration. Attention is also given to some of the proposed heavy exotic hadrons that could be produced with sufficient abundance in HIC because of the significant numbers of charm and bottom quarks produced at RHIC and LHC, making it possible to study them in these experiments. Further included in the discussion are the general formalism for the coalescence model that involves resonance particles and its implication on the present estimated yield for resonance production. Finally, a review is given on recent studies to constrain the hadron-hadron interaction through correlation measurements in HIC and their implications on the interpretation and the possible existence of exotic states in hadronic interactions.
We study the production of multi-charmed hadrons by recombination in heavy ion collisions by focusing on the production of $Xi_{cc}$, $Xi_{cc}^*$, $Omega_{scc}$, $Omega_{scc}^*$, $Omega_{ccc}$ baryons and X(3872) mesons. Starting from the estimation of yields for those hadrons at chemical freeze-out in both the statistical and coalescence model, we evaluate their transverse momentum distributions at mid-rapidity in the coalescence model. We show that yields of multi-charmed hadrons in heavy ion collisions at RHIC and LHC are large enough, and thereby not only multi-charmed hadrons observed so far, e.g., the $Xi_{cc}$ but also those which have not been observed yet, can be discovered sufficiently in heavy ion collisions. We also find that the transverse momentum distribution ratio between various multi-charmed hadrons sensitively reflects the interplay between quark contents of corresponding hadrons as well as the transverse momentum distribution of charm quarks at the hadronization point, and therefore we insist that studying both the transverse momentum distributions of multi-charmed hadrons themselves and transverse momentum distribution ratios between various multi-charmed hadrons provide us with useful information on hadron production mechanism involving charm quarks in heavy ion collisions.
We investigate the possibilities of using measurements in present and future experiments on heavy ion collisions to answer some longstanding problems in hadronic physics, namely identifying hadronic molecular states and exotic hadrons with multiquark components. The yields of a selected set of exotic hadron candidates in relativistic heavy ion collisions are discussed in the coalescence model in comparison with the statistical model. We find that the yield of a hadron is typically an order of magnitude smaller when it is a compact multiquark state, compared to that of an excited hadronic state with normal quark numbers. We also find that some loosely bound hadronic molecules are formed more abundantly than the statistical model prediction by a factor of two or more. Moreover, due to the significant numbers of charm and bottom quarks produced at RHIC and even larger numbers expected at LHC, some of the proposed heavy exotic hadrons could be produced with sufficient abundance for detection, making it possible to study these new exotic hadrons in heavy ion collisions.
The in-medium color potential is a fundamental quantity for understanding the properties of the strongly coupled quark-gluon plasma (sQGP). Open and hidden heavy-flavor (HF) production in ultrarelativistic heavy-ion collisions (URHICs) has been found to be a sensitive probe of this potential. Here we utilize a previously developed quarkonium transport approach in combination with insights from open HF diffusion to extract the color-singlet potential from experimental results on $Upsilon$ production in URHICs. Starting from a parameterized trial potential, we evaluate the $Upsilon$ transport parameters and conduct systematic fits to available data for the centrality dependence of ground and excited states at RHIC and the LHC. The best fits and their statistical significance are converted into a temperature-dependent potential. Including nonperturbative effects in the dissociation rate guided from open HF phenomenology, we extract a rather strongly coupled potential with substantial remnants of the long-range confining force in the QGP.
Discriminating hadronic molecular and multi-quark states is a long standing problem in hadronic physics. We propose here to utilize relativistic heavy ion collisions to resolve this problem, as exotic hadron yields are expected to be strongly affecte d by their structures. Using the coalescence model, we find that the exotic hadron yield relative to the statistical model result is typically an order of magnitude smaller for a compact multi-quark state, and larger by a factor of two or more for a loosely bound hadronic molecule. We further find that some of the newly proposed heavy exotic states could be produced and realistically measured at RHIC and LHC.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا