ترغب بنشر مسار تعليمي؟ اضغط هنا

Studying Exotic Hadrons in Heavy Ion Collisions

227   0   0.0 ( 0 )
 نشر من قبل Sungtae Cho
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the possibilities of using measurements in present and future experiments on heavy ion collisions to answer some longstanding problems in hadronic physics, namely identifying hadronic molecular states and exotic hadrons with multiquark components. The yields of a selected set of exotic hadron candidates in relativistic heavy ion collisions are discussed in the coalescence model in comparison with the statistical model. We find that the yield of a hadron is typically an order of magnitude smaller when it is a compact multiquark state, compared to that of an excited hadronic state with normal quark numbers. We also find that some loosely bound hadronic molecules are formed more abundantly than the statistical model prediction by a factor of two or more. Moreover, due to the significant numbers of charm and bottom quarks produced at RHIC and even larger numbers expected at LHC, some of the proposed heavy exotic hadrons could be produced with sufficient abundance for detection, making it possible to study these new exotic hadrons in heavy ion collisions.

قيم البحث

اقرأ أيضاً

Heavy ion collisions (HIC) at high energies are excellent ways for producing heavy hadrons and composite particles. With upgraded detectors at RHIC and LHC, it has become possible to measure hadrons beyond their ground states. Therefore, HIC provide a new method for studying exotic hadrons that are either hadronic molecular states or compact multiquark systems. Because their structures are related to the fundamental properties of QCD, studying exotic hadrons is currently one of the most active areas of research in hadron physics. Experiments carried out at various accelerator facilities have indicated that some exotic hadrons may have already been produced. The present review is a summary of the current understanding of a selected set of exotic particle candidates that can be potentially measured in HIC. It also includes discussions on the production of exotic hadrons in HIC based on the coalescence and statistical models. A more detailed discussion leads to the conclusion that the yield of a hadron is typically an order of magnitude smaller when it is a compact multiquark state than that of an excited hadronic state with normal quark numbers and/or a molecular configuration. Attention is also given to some of the proposed heavy exotic hadrons that could be produced with sufficient abundance in HIC because of the significant numbers of charm and bottom quarks produced at RHIC and LHC, making it possible to study them in these experiments. Further included in the discussion are the general formalism for the coalescence model that involves resonance particles and its implication on the present estimated yield for resonance production. Finally, a review is given on recent studies to constrain the hadron-hadron interaction through correlation measurements in HIC and their implications on the interpretation and the possible existence of exotic states in hadronic interactions.
Identifying hadronic molecular states and/or hadrons with multi-quark components either with or without exotic quantum numbers is a long standing challenge in hadronic physics. We suggest that studying the production of these hadrons in relativistic heavy ion collisions offer a promising resolution to this problem as yields of exotic hadrons are expected to be strongly affected by their structures. Using the coalescence model for hadron production, we find that compared to the case of a non-exotic hadron with normal quark numbers, the yield of an exotic hadron is typically an order of magnitude smaller when it is a compact multi-quark state and a factor of two or more larger when it is a loosely bound hadronic molecule. We further find that due to the appreciable numbers of charm and bottom quarks produced in heavy ion collisions at RHIC and even larger numbers expected at LHC, some of the newly proposed heavy exotic states could be produced and realistically measured in these experiments.
We study the production of multi-charmed hadrons by recombination in heavy ion collisions by focusing on the production of $Xi_{cc}$, $Xi_{cc}^*$, $Omega_{scc}$, $Omega_{scc}^*$, $Omega_{ccc}$ baryons and X(3872) mesons. Starting from the estimation of yields for those hadrons at chemical freeze-out in both the statistical and coalescence model, we evaluate their transverse momentum distributions at mid-rapidity in the coalescence model. We show that yields of multi-charmed hadrons in heavy ion collisions at RHIC and LHC are large enough, and thereby not only multi-charmed hadrons observed so far, e.g., the $Xi_{cc}$ but also those which have not been observed yet, can be discovered sufficiently in heavy ion collisions. We also find that the transverse momentum distribution ratio between various multi-charmed hadrons sensitively reflects the interplay between quark contents of corresponding hadrons as well as the transverse momentum distribution of charm quarks at the hadronization point, and therefore we insist that studying both the transverse momentum distributions of multi-charmed hadrons themselves and transverse momentum distribution ratios between various multi-charmed hadrons provide us with useful information on hadron production mechanism involving charm quarks in heavy ion collisions.
Recent experiments at RHIC and LHC have demonstrated that there are excellent opportunities to produce light baryonic clusters of exotic matter (strange and anti-matter) in ultra-relativistic ion collisions. Within the hybrid-transport model UrQMD we show that the coalescence mechanism can naturally explain the production of these clusters in the ALICE experiment at LHC. As a consequence of this mechanism we predict the rapidity domains where the yields of such clusters are much larger than the observed one at midrapidity. This new phenomenon can lead to unique methods for producing exotic nuclei.
Combining event-by-event hydrodynamics with heavy quark energy loss we compute correlations between the heavy and soft sectors for elliptic and triangular flow harmonics $v_2$ and $v_3$ of D$^0$ mesons in PbPb collisions at $2.76$ TeV and $5.02$ TeV. Our results indicate that $v_3$ is strongly influenced by the fragmentation temperature and that it builds up later than $v_2$ during the evolution of the system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا