ﻻ يوجد ملخص باللغة العربية
We discuss prospects of the $Z$ search at the LHC in non-minimal Universal Extra Dimensions with tree-level brane-local terms in five dimensions. In this scenario, we find two major differences from the usual $Z$ physics: (i) two $Z$ candidates close-by in mass exist; (ii) the effective couplings to the SM fermions could be very large due to drastic overlapping of their profiles along the extra dimension. To evaluate the actual situation precisely, we reconsider the important issues of resonant processes, i.e., treatment of resonant propagators and including interference effects.
Discovery of a Higgs boson and precise measurements of its properties open a new window to test physics beyond the standard model. Models with Universal Extra Dimensions are not exception. Kaluza-Klein excitations of the standard model particles cont
In theories with Universal Extra-Dimensions (UED), the gamma_1 particle, first excited state of the hypercharge gauge boson, provides an excellent Dark Matter (DM) candidate. Here we use a modified version of the SuperBayeS code to perform a Bayesian
We study the physics of Kaluza-Klein (KK) top quarks in the framework of a non-minimal Universal Extra Dimension (nmUED) with an orbifolded (S1/Z2) flat extra spatial dimension in the presence of brane-localized terms (BLTs). In general, BLTs affect
In this paper we consider an $S^{1}/mathbb{Z}_2$ compactified flat extra dimensional scenario where all the standard model states can access the bulk and have generalised brane localised kinetic terms. The flavour structure of brane kinetic terms for
We explore the properties of dark matter in theories with two universal extra dimensions, where the lightest Kaluza-Klein state is a spin-0 neutral particle, representing a six-dimensional photon polarized along the extra dimensions. Annihilation of