ﻻ يوجد ملخص باللغة العربية
This paper presents a finding of the correlation between the width of a strong diffuse interstellar band at 6196A and the excitation temperature of C2 based on high resolution and high signal-to-noise ratio spectra. The excitation temperature was determined from absorption lines of the Phillips A-X and Mulliken D-X systems. The width and shape of the narrow 6196A DIB profile apparently depend on the C2 temperature, being broader for higher values.
We analyzed archival spectra acquired with the Hubble Space Telescope for a study of interstellar C2. Absorption from the electronic transitions, D ^1Sigma^+_u -- X ^1Sigma^+_g (0,0) as well as F ^1Pi_u -- X ^1Sigma^+_g (0,0) and (1,0), was the focus
We aim to make use of the measurements from the Giraffe Inner Bulge Survey (GIBS) and the Gaia$-$ESO survey (GES) to study the kinematics and distance of the carrier of DIB$,lambda$8620, as well as other properties. We successfully detected and measu
We present strong evidence that the broad, diffuse interstellar bands (DIBs) at 4881 and 5450,AA are caused by the $B,^1$B$_1$,$leftarrow$,$X,^1$A$_1$ transition of H$_2$CCC (l-C$_3$H$_2$). The large widths of the bands are due to the short lifetime
Diffuse interstellar bands (DIBs) trace warm neutral and weakly-ionized diffuse interstellar medium (ISM). Here we present a dedicated, high signal-to-noise spectroscopic study of two of the strongest DIBs, at 5780 and 5797 AA, in optical spectra of
Recently, the presence of fullerenes in the interstellar medium (ISM) has been confirmed especially with the first confirmed identification of two strong diffuse interstellar bands (DIBs) with C60+. This justifies reassesing the importance of interst