ترغب بنشر مسار تعليمي؟ اضغط هنا

The diffuse interstellar band around 8620 {AA} II. Kinematics and distance of the DIB carrier

104   0   0.0 ( 0 )
 نشر من قبل He Zhao
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We aim to make use of the measurements from the Giraffe Inner Bulge Survey (GIBS) and the Gaia$-$ESO survey (GES) to study the kinematics and distance of the carrier of DIB$,lambda$8620, as well as other properties. We successfully detected and measured DIB$,lambda$8620 in 760 of 4117 GES spectra. Combined with the DIBs measured in GIBS spectra, we confirmed a tight relation between EW and $E(J-K_{rm S})$ as well as $A_{rm V}$, with similar fitting coefficients to those found by previous works. With a more accurate sample and the consideration of the solar motion, the rest-frame wavelength of DIB$,lambda$8620 was redetermined as 8620.83 r{A}, with a mean fit error of 0.36 r{A}. We studied the kinematics of the DIB carriers by tracing their median radial velocities in each field in the local standard of rest ($V_{rm LSR}$) and into the galactocentric frame ($V_{rm GC}$), respectively, as a function of the Galactic longitudes. Based on the median $V_{rm LSR}$ and two Galactic rotation models, we obtained valid kinematic distances of the DIB carriers for nine GIBS and ten GES fields. We also found a linear relation between the DIB$,lambda$8620 measured in this work and the near-infrared DIB in APOGEE spectra at $1.5273,mu m$. We demonstrate that the DIB carriers can be located much closer to the observer than the background stars based on the following arguments: (i) qualitatively, the carriers occupy in the Galactic longitude$-$velocity diagram typical rotation velocities of stars in the local Galactic disk, while the background stars in the GIBS survey are mainly located in the Galactic bulge; (ii) quantitatively, all the derived kinematic distances of the DIB carriers are smaller than the median distances to background stars in each field.

قيم البحث

اقرأ أيضاً

We developed a set of procedures to automatically detect and measure the DIB around 8620 {AA} (the Gaia DIB) for a wide range of temperatures. The DIB profile is fit with a Gaussian function. Specifically, the DIB feature is extracted from the spectr a of late-type stars by subtracting the corresponding synthetic spectra. For early-type stars we applied a specific model based on the Gaussian process that needs no prior knowledge of the stellar parameters. The method was tested on $sim$5000 spectra from the Giraffe Inner Bulge Survey (GIBS). After validation, we obtained 4194 reasonable fitting results from the GIBS database. An EW versus $E(J,{-},K_{rm S})$ relation is derived as $E(J,{-},K_{rm S}),{=},1.875,({pm},0.152),{times},{rm EW},{-},0.011,({pm},0.048)$, according to $E(B,{-},V)/{rm EW},{=},2.721$, which is highly consistent with previous results toward similar sightlines. After a correction based on the VVV database for both EW and reddening, the coefficient derived from individual GIBS fields, $E(J,{-},K_{rm S})/{rm EW},{=},1.884,{pm},0.225$, is also in perfect agreement with literature values. Based on a subsample of 1015 stars toward the Galactic center within $-3^{circ},{<},b,{<},3^{circ}$ and $-6^{circ},{<},l,{<},3^{circ}$, we determined a rest-frame wavelength of the Gaia DIB as 8620.55 {AA}. A Gaussian profile is proved to be a proper and stable assumption for the Gaia DIB as no intrinsic asymmetry is found.
47 - S. Vidrih , T. Zwitter 2004
Using the correlation between the equivalent width of the diffuse interstellar band (DIB) at 8620 A and the interstellar reddening reported by Munari (2000) GAIA could directly trace the interstellar extinction throughout the Galaxy. We checked for t he magnitude and distance limitations of this method in 42 Galactic directions by simulating the RVS data on the stellar sample provided by the model of stellar population synthesis of the Galaxy (Robin et al. 2003). The simulation indicates that the imprint of the 8620 A DIB will be detected in the RVS spectra of stars with magnitudes up to V~16 with sufficient accuracy to trace not only the distribution of the interstellar medium but also the radial component of its kinematic motion, i.e. the radial velocity of the mass center of the dust cloud in the line of sight.
We present a new high signal to noise ratio spectroscopic survey of the Northern hemisphere to probe the Local Bubble and its surroundings using the $lambda 5780$ AA and $lambda 5797$ AA Diffuse Interstellar Bands (DIBs). We observed 432 sightlines t o a distance of 200 pc over a duration of 3 years. In this study, we establish the $lambda 5780$ and $lambda 5797$ correlations with Na I, Ca II and E(B-V), for both inside and outside the Local Bubble. The correlations show that among all neutral and ionized atoms, the correlation between Ca II and $lambda5780$ is stronger than its correlation with $lambda5797$, suggesting that $lambda5780$ is more associated with regions where Ca$^{+}$ is more abundant. We study the $lambda5780$ correlation with $lambda5797$, which shows a tight correlation within and outside the Local Bubble. In addition we investigate the DIB properties in UV irradiated and UV shielded regions. We find that, within and beyond the Local Bubble, $lambda5797$ is located in denser parts of clouds, protected from UV irradiation, while $lambda5780$ is located in the low density regions of clouds.
We present strong evidence that the broad, diffuse interstellar bands (DIBs) at 4881 and 5450,AA are caused by the $B,^1$B$_1$,$leftarrow$,$X,^1$A$_1$ transition of H$_2$CCC (l-C$_3$H$_2$). The large widths of the bands are due to the short lifetime of the $B,^1$B$_1$ electronic state. The bands are predicted from absorption measurements in a neon matrix and observed by cavity ring-down in the gas phase and show exact matches to the profiles and wavelengths of the two broad DIBs. The strength of the 5450,AA DIB leads to a l-C$_3$H$_2$ column density of $sim5times10^{14}$ cm$^{-2}$ towards HD,183143 and $sim2times10^{14}$,cm$^{-2}$ to HD,206267. Despite similar values of $E$($B-V$), the 4881 and 5450,AA DIBs in HD,204827 are less than one third their strength in HD,183143, while the column density of interstellar C$_3$ is unusually high for HD,204827 but undetectable for HD,183143. This can be understood if C$_3$ has been depleted by hydrogenation to species such as l-C$_3$H$_2$ towards HD,183143. There are also three rotationally resolved sets of triplets of l-C$_3$H$_2$ in the 6150$-$6330,AA region. Simulations, based on the derived spectroscopic constants and convolved with the expected instrumental and interstellar line broadening, show credible coincidences with sharp, weak DIBs for the two observable sets of triplets. The region of the third set is too obscured by the $alpha$-band of telluric O$_2$.
The young stellar cluster Westerlund 1 (Wd 1: $l$=339.6$^circ$, b=$-$0.4$^circ$) is one of the most massive in the local Universe, but accurate parameters are pending on better determination of its extinction and distance. Based on our photometry and data collected from other sources, we have derived a reddening law for the cluster line-of-sight representative of the Galactic Plane (-5$^circ<$b$<$+5$^circ$) in the window 0.4-4.8 $mu$m: The power law exponent $alpha$=2.13$pm$0.08 is much steeper than those published a decade ago (1.6-1.8) and our index $R_V$=2.50$pm$0.04 also differs from them, but in very good agreement with recent works based on deep surveys in the inner Galaxy. As a consequence, the total extinction $A_{Ks}$=0.74$ pm $0.08 ($A_V$=11.40$ pm$ 2.40) is substantially smaller than previous results(0.91-1.13), part of which ($A_{Ks}$=0.63 or $A_V$=9.66) is from the ISM. The extinction in front of the cluster spans a range of $Delta A_Vsim$8.7,mag with a gradient increasing from SW to NE across the cluster face, following the same general trend of warm dust distribution. The map of the $J-Ks$ colour index also shows a trend of reddening in this direction. We measured the equivalent width of the diffuse interstellar band at 8620 $AA$ (the GAIA DIB) for Wd 1 cluster members and derived the relation $A_{Ks}$=0.612 $EW$ $-$ 0.191 $EW^2$. This extends the Munari et al. (2008) relation, valid for $E_{B-V}$ $<$ 1, to the non-linear regime ($A_V$ $>$ 4).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا