ﻻ يوجد ملخص باللغة العربية
The Spectral and Photometric Imaging Receiver (SPIRE) on Herschel has been carrying out deep extragalactic surveys, one of whose aims is to establish spectral energy distributions (SED)s of individual galaxies spanning the infrared/submillimeter (IR/SMM) wavelength region. We report observations of the (IR/SMM) emission from the Lockman North field (LN) and Great Observatories Origins Deep Survey field North (GOODS-N). Because galaxy images in the wavelength range covered by Herschel generally represent a blend with contributions from neighboring galaxies, we present sets of galaxies in each field especially free of blending at 250, 350, and 500 microns. We identify the cumulative emission of these galaxies and the fraction of the far infrared cosmic background radiation they contribute. Our surveys reveal a number of highly luminous galaxies at redshift z ~< 3 and a novel relationship between infrared and visible emission that shows a dependence on luminosity and redshift.
We present spectral energy distributions (SEDs) for 68 Herschel sources detected at 5-sigma at 250, 350 and 500 mu in the HerMES SWIRE-Lockman field. We explore whether existing models for starbursts, quiescent star-forming galaxies and for AGN dust
We present a method for selecting $z>4$ dusty, star forming galaxies (DSFGs) using Herschel/SPIRE 250/350/500 $mu m$ flux densities to search for red sources. We apply this method to 21 deg$^2$ of data from the HerMES survey to produce a catalog of 3
We have analysed the rest-frame far infrared (FIR) properties of a sample of massive (Mstar > 10^11Msun) galaxies at 2<z<3 in the GOODS (Great Observatories Origins Deep Survey) North field using the Spectral and Photometric Imaging Receiver (SPIRE)
We present a study of the infrared properties for a sample of seven spectroscopically confirmed submillimeter galaxies at $z>$4.0. By combining ground-based near-infrared, Spitzer IRAC and MIPS, Herschel SPIRE, and ground-based submillimeter/millimet
We report on the sensitivity of SPIRE photometers on the Herschel Space Observatory. Specifically, we measure the confusion noise from observations taken during the Science Demonstration Phase of the Herschel Multi-tiered Extragalactic Survey. Confus