ﻻ يوجد ملخص باللغة العربية
We report on the sensitivity of SPIRE photometers on the Herschel Space Observatory. Specifically, we measure the confusion noise from observations taken during the Science Demonstration Phase of the Herschel Multi-tiered Extragalactic Survey. Confusion noise is defined to be the spatial variation of the sky intensity in the limit of infinite integration time, and is found to be consistent among the different fields in our survey at the level of 5.8, 6.3 and 6.8 mJy/beam at 250, 350 and 500 microns, respectively. These results, together with the measured instrument noise, may be used to estimate the integration time required for confusion-limited maps, and provide a noise estimate for maps obtained by SPIRE.
Local luminosity functions are fundamental benchmarks for high-redshift galaxy formation and evolution studies as well as for models describing these processes. Determining the local luminosity function in the submillimeter range can help to better c
We describe the production and verification of sky maps of the five SPIRE fields observed as part of the Herschel Multi-tiered Extragalactic Survey (HerMES) during the Science Demonstration Phase (SDP) of the Herschel mission. We have implemented an
We present first results of a study of the submillimetre (rest frame far-infrared) properties of z~3 Lyman Break Galaxies (LBGs) and their lower-redshift counterparts BX/BM galaxies, based on Herschel-SPIRE observations of the Northern field of the G
We examine the rest-frame far-infrared emission from powerful radio sources with 1.4GHz luminosity densities of 25<=log(L_1.4/WHz^-1)<=26.5 in the extragalactic Spitzer First Look Survey field. We combine Herschel/SPIRE flux densities with Spitzer/IR
We present a method for selecting $z>4$ dusty, star forming galaxies (DSFGs) using Herschel/SPIRE 250/350/500 $mu m$ flux densities to search for red sources. We apply this method to 21 deg$^2$ of data from the HerMES survey to produce a catalog of 3