ﻻ يوجد ملخص باللغة العربية
In this work, we investigate the quasinormal modes for a massive scalar field with a nonminimal coupling with gravity in the spacetime of a loop quantum black hole, known as the Self-Dual Black Hole. In this way, we have calculated the characteristic frequencies using the 3rd order WKB approach, where we can verify a strong dependence with the mass of scalar field, the parameter of nonminimal coupling with gravity, and parameters of the Loop Quantum Gravity. From our results, we can check that the Self-Dual Black Hole is stable under the scalar perturbations when assuming small values for the parameters. Also, such results tell us that the quasinormal modes assume different values for the cases where the mass of field is null and the nonminimal coupling assumes $xi=0$ and $xi=1/6$, i.e., a possible breaking of the conformal invariance can be seen in the context of loop quantum black holes.
In this paper we investigate quasinormal modes (QNM) for a scalar field around a noncommutative Schwarzschild black hole. We verify the effect of noncommutativity on quasinormal frequencies by applying two procedures widely used in the literature. Th
Holography relates the quasinormal modes frequencies of AdS black holes to the pole structure of the dual field theory propagator. These modes thus provide the timescale for the approach to thermal equilibrium in the CFT. Here, we study how such pole
The final ringdown phase in a coalescence process is a valuable laboratory to test General Relativity and potentially constrain additional degrees of freedom in the gravitational sector. We introduce here an effective description for perturbations ar
We consider scalar and spinorial perturbations on a background described by a $z=3$ three-dimensional Lifshitz black hole. We obtained the corresponding quasinormal modes which perfectly agree with the analytical result for the quasinormal frequency
In this paper we aim to investigate the process of massless scalar wave scattering due to a self-dual black hole through the partial wave method. We calculate the phase shift analytically at the low energy limit and we show that the dominant term of