ترغب بنشر مسار تعليمي؟ اضغط هنا

Auto-correlation Functions and Quantum Fluctuations of the Transverse Ising Chain by the Quantum Transfer Matrix Method

226   0   0.0 ( 0 )
 نشر من قبل Makoto Inoue
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Makoto Inoue




اسأل ChatGPT حول البحث

The Quantum Transfer Matrix method based on the Suzuki-Trotter formulation is extended to dynamical problems. The auto-correlation functions of the Transverse Ising chain are derived by this method. It is shown that the Trotter-directional correlation function is interpreted as a Matsubaras temperature Green function and that the auto-correlation function is given by analytic continuation of the Green function. We propose the Trotter-directional correlation function is a new measure of the quantum fluctuation and show how it works well as a demonstration.



قيم البحث

اقرأ أيضاً

The critical behavior of the Ising chain with long-range ferromagnetic interactions decaying with distance $r^alpha$, $1<alpha<2$, is investigated using a numerically efficient transfer matrix (TM) method. Finite size approximations to the infinite c hain are considered, in which both the number of spins and the number of interaction constants can be independently increased. Systems with interactions between spins up to 18 sites apart and up to 2500 spins in the chain are considered. We obtain data for the critical exponents $ u$ associated with the correlation length based on the Finite Range Scaling (FRS) hypothesis. FRS expressions require the evaluation of derivatives of the thermodynamical properties, which are obtained with the help of analytical recurrence expressions obtained within the TM framework. The Van den Broeck extrapolation procedure is applied in order to estimate the convergence of the exponents. The TM procedure reduces the dimension of the matrices and circumvents several numerical matrix operations.
We investigate the entanglement dynamics between two distant qubits by analyzing correlations in the quantum Ising model. Starting from the spin system in a paramagnetic regime enforced by the external magnetic field $B$, we then switch on the ferrom agnetic spin-spin coupling $J$. Using the large coordination number expansion, we consider two limiting switching regimes: (1) adiabatic, which monitors the evolution of the ground state through the quantum transition to an ordered state; and (2) instantaneous (quench) which monitors instead the propagation of quantum fluctuations and simulates the generation of long range correlations. In particular, we find that quantum fluctuations propagate with twice the group speed of excitations in the equilibrium state of the system.
59 - L. Turban , F. Igloi (2 1999
We consider random extended surface perturbations in the transverse field Ising model decaying as a power of the distance from the surface towards a pure bulk system. The decay may be linked either to the evolution of the couplings or to their probab ilities. Using scaling arguments, we develop a relevance-irrelevance criterion for such perturbations. We study the probability distribution of the surface magnetization, its average and typical critical behaviour for marginal and relevant perturbations. According to analytical results, the surface magnetization follows a log-normal distribution and both the average and typical critical behaviours are characterized by power-law singularities with continuously varying exponents in the marginal case and essential singularities in the relevant case. For enhanced average local couplings, the transition becomes first order with a nonvanishing critical surface magnetization. This occurs above a positive threshold value of the perturbation amplitude in the marginal case.
Taking one-dimensional random transverse Ising model (RTIM) with the double-Gaussian disorder for example, we investigated the spin autocorrelation function (SAF) and associated spectral density at high temperature by the recursion method. Based on t he first twelve recurrants obtained analytically, we have found strong numerical evidence for the long-time tail in the SAF of a single spin. Numerical results indicate that when the standard deviation {sigma}_{JS} (or {sigma}_{BS}) of the exchange couplings J_{i} (or the random transverse fields B_{i}) is small, no long-time tail appears in the SAF. The spin system undergoes a crossover from a central-peak behavior to a collective-mode behavior, which is the dynamical characteristics of RTIM with the bimodal disorder. However, when the standard deviation is large enough, the system exhibits similar dynamics behaviors to those of the RTIM with the Gaussian disorder, i.e., the system exhibits an enhanced central-peak behavior for large {sigma}_{JS} or a disordered behavior for large {sigma}_{BS}. In this instance, the long-time tails in the SAFs appear, i.e., C(t)simt^{-2}. Similar properties are obtained when the random variables (J_{i} or B_{i}) satisfy other distributions such as the double-exponential distribution and the double-uniform distribution.
72 - Masaki Oshikawa 2019
I study the universal finite-size scaling function for the lowest gap of the quantum Ising chain with a one-parameter family of ``defect boundary conditions, which includes periodic, open, and antiperiodic boundary conditions as special cases. The un iversal behavior can be described by the Majorana fermion field theory in $1+1$ dimensions, with the mass proportional to the deviation from the critical point. Although the field theory appears to be symmetric with respect to the inversion of the mass (Kramers-Wannier duality), the actual gap is asymmetric, reflecting the spontaneous symmetry breaking in the ordered phase which leads to the two-fold ground-state degeneracy in the thermodynamic limit. The asymptotic ground-state degeneracy in the ordered phase is realized by (i) formation of a bound state at the defect (except for the periodic/antiperiodic boundary condition) and (ii) effective reversal of the fermion number parity in one of the sectors (except for the open boundary condition), resulting in a rather nontrivial crossover ``phase diagram in the space of the boundary condition (defect strength) and mass.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا