ترغب بنشر مسار تعليمي؟ اضغط هنا

Films with the discrete nano-DLC-particles as the field emission cascade

59   0   0.0 ( 0 )
 نشر من قبل Fengqi Song
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The films with the discrete diamond-like-carbon nanoparticles were prepared by the deposition of the carbon nanoparticle beam. Their morphologies were imaged by Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). The nanoparticles were found distributed on the silicon (100) substrate discretely. The semisphere shapes of the nanoparticles were demonstrated by the AFM line profile. EELS was measured and the sp3 ratio as high as 86% was found. The field-induced electron emission of the as-prepared cascade (nanoDLC/ Si) was tested and the current density of 1mA/cm2 was achieved at 10.2V/{mu}m.

قيم البحث

اقرأ أيضاً

The magnetic properties of platinum nano-particles ranging in size from a few to up 300 atoms are investigated through first-principle calculations. It is found that the total magnetization depends strongly on the local atomic rearrangements, with an enhancement around five-fold axis. This is due to an elongation of the nearest neighbor distance together with a contraction of the 2$^{nd}$ distance, resulting in a net interatomic partial charge transfer from the atoms lying on the sub-surface layer (donor) towards the vertexes (acceptor).
We demonstrate a microscopic magnonic-crystal waveguide produced by nano-patterning of a 20 nm thick film of Yttrium Iron Garnet. By using the phase-resolved micro-focus Brillouin light scattering spectroscopy, we map the intensity and the phase of s pin waves propagating in such a periodic magnetic structure. Based on these maps, we obtain the dispersion and the attenuation characteristics of spin waves providing detailed information about the physics of spin-wave propagation in the magnonic crystal. We show that, in contrast to the simplified physical picture, the maximum attenuation of spin waves is achieved close to the edge of the magnonic band gap, which is associated with non-trivial reflection characteristics of spin waves in non-uniform field potentials.
We derive the stochastic model of plasma-condensate systems by taking into account anisotropy in transference of adatoms between neighbor layers and by introducing fluctuations of adsorbate flux. We show, that by varying the fluctuations intensity on can govern dynamics of pattern formation on intermediate layer of multi-layer plasma-condensate system. It is shown that the morphology of the growing surface, type of surface structures and their linear size can be controlled by the intensity of the adsorbate flux fluctuations.
Spin transfer driven excitations in magnetic nanostructures are characterized by a relatively large microwave emission linewidth (10 -100 MHz). Here we investigate the role of thermal fluctuations as well as of the non-linear amplitude-phase coupling parameter and the amplitude relaxation rate to explain the linewidth broadening of in-plane precession modes induced in planar nanostructures. Experiments on the linewidth broadening performed on MgO based magnetic tunnel junctions are compared to the linewidth obtained from macrospin simulations and from evaluation of the phase variance. In all cases we find that the linewidth varies linearly with temperature when the amplitude relaxation rate is of the same order as the linewidth and when the amplitude-phase coupling parameter is relatively small. The small amplitude-phase coupling parameter means that the linewidth is dominated by direct phase fluctuations and not by amplitude fluctuations, explaining thus its linear dependence as a function of temperature.
We study analytically the optical properties of a simple model for an electron-hole pair on a ring subjected to perpendicular magnetic flux and in-plane electric field. We show how to tune this excitonic system from optically active to optically dark as a function of these external fields. Our results offer a simple mechanism for exciton storage and read-out.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا