ﻻ يوجد ملخص باللغة العربية
We derive the stochastic model of plasma-condensate systems by taking into account anisotropy in transference of adatoms between neighbor layers and by introducing fluctuations of adsorbate flux. We show, that by varying the fluctuations intensity on can govern dynamics of pattern formation on intermediate layer of multi-layer plasma-condensate system. It is shown that the morphology of the growing surface, type of surface structures and their linear size can be controlled by the intensity of the adsorbate flux fluctuations.
Superconductivity in granular films is controlled by the grain size and the inter-grain coupling. In a two-component granular system formed by a random mixture of a normal metal (N) and a superconductor (S), the superconducting nano-grains may become
We present a new model of plasma-condensate system, by taking into account an anisotropy of transference reactions of adatoms between neighbor layers of multi-layer system, caused by the strength of the electric field near substrate. We discuss an in
Molybdenum rhenium alloy thin films can exhibit superconductivity up to critical temperatures of $T_c=15mathrm{K}$. At the same time, the films are highly stable in the high-temperature methane / hydrogen atmosphere typically required to grow single
Graphene is generally considered to be a strong candidate to succeed silicon as an electronic material. However, to date, it actually has not yet demonstrated capabilities that exceed standard semiconducting materials. Currently demonstrated viable g
The local epitaxial growth of pulsed laser deposited Ca$_2$MnO$_4$ films on polycrystalline spark plasma sintered Sr$_2$TiO$_4$ substrates was investigated to determine phase formation and preferred epitaxial orientation relationships ($ORs$) for iso