ﻻ يوجد ملخص باللغة العربية
We consider isolated compact remnants (ICoRs), i.e. neutrons stars and black holes that do not reside in binary systems and therefore cannot be detected as X-ray binaries. ICoRs may represent $sim,5$ percent of the stellar mass budget of the Galaxy, but they are very hard to detect. Here we explore the possibility of using microlensing to identify ICoRs. In a previous paper we described a simulation of neutron star evolution in phase space in the Galaxy, taking into account the distribution of the progenitors and the kick at formation. Here we first reconsider the evolution and distribution of neutron stars and black holes adding a bulge component. From the new distributions we calculate the microlensing optical depth, event rate and distribution of event time scales, comparing and contrasting the case of ICoRs and normal stars. We find that the contribution of remnants to optical depth is slightly lower than without kinematics, owing to the evaporation from the Galaxy. On the other hand, the relative contribution to the rate of events is a factor $sim,5$ higher. In all, $sim,6-7$ percent of the events are likely related to ICoRs. In particular, $sim,30-40$ percent of the events with duration $>,100$ days are possibly related to black holes. It seems therefore that microlensing observations are a suitable tool to probe the population of Galactic ICoRs.
We report the discovery of an isolated compact galaxy triplet SDSS J084843.45+164417.3, which is first detected by the LAMOST spectral survey and then confirmed by the spectroscopic observation of the BFOSC of the 2.16 meter telescope. It is found th
Our knowledge of the birth mass function of neutron stars and black holes is based on observations of binary systems but the binary evolution likely affects the final mass of the compact object. Gravitational microlensing allows us to detect and meas
Gravitational microlensing may detect dark stellar remnants - black holes or neutron stars - even if they are isolated. However, it is challenging to estimate masses of isolated dark stellar remnants using solely photometric data for microlensing eve
Compact elliptical galaxies form a rare class of stellar system (~30 presently known) characterized by high stellar densities and small sizes and often harboring metal-rich stars. They were thought to form through tidal stripping of massive progenito
Young Supernova remnants (SNRs) with smaller angular sizes are likely missing from existing radio SNR catalogues, caused by observational constraints and selection effects. In order to find new compact radio SNR candidates, we searched the high angul