ﻻ يوجد ملخص باللغة العربية
Suitable gauge conditions are fundamental for stable and accurate numerical-relativity simulations of inspiralling compact binaries. A number of well-studied conditions have been developed over the last decade for both the lapse and the shift and these have been successfully used both in vacuum and non-vacuum spacetimes when simulating binaries with comparable masses. At the same time, recent evidence has emerged that the standard Gamma-driver shift condition requires a careful and non-trivial tuning of its parameters to ensure long-term stable evolutions of unequal-mass binaries. We present a novel gauge condition in which the damping constant is promoted to be a dynamical variable and the solution of an evolution equation. We show that this choice removes the need for special tuning and provides a shift damping term which is free of instabilities in our simulations and dynamically adapts to the individual positions and masses of the binary black-hole system. Our gauge condition also reduces the variations in the coordinate size of the apparent horizon of the larger black hole and could therefore be useful when simulating binaries with very small mass ratios.
A maximally rotating Kerr black hole is said to be extremal. In this paper we introduce the corresponding restrictions for isolated and dynamical horizons. These reduce to the standard notions for Kerr but in general do not require the horizon to be
We find stealth Schwarzschild solutions with a nontrivial profile of the scalar field regular on the horizon in the Einstein gravity coupled to the scalar field with the k-essence and/or generalized cubic galileon terms, which is a subclass of the Ho
We initiate the development of a horizon-based initial (or rather final) value formalism to describe the geometry and physics of the near-horizon spacetime: data specified on the horizon and a future ingoing null boundary determine the near-horizon g
Gravitational wave and electromagnetic observations can provide new insights into the nature of matter at supra-nuclear densities inside neutron stars. Improvements in electromagnetic and gravitational wave sensing instruments continue to enhance the
In this report we obtain higher order asymptotic expansions of solutions to wave equations with frictional and viscoelastic damping terms. Although the diffusion phenomena are dominant, differences between the solutions we deal with and those of heat